
1

Load balancing in peer-to-peer systems using a diffusive approach

Ying Qiao

School of Electrical Engineering and

Computer Science

University Of Ottawa

yqiao074@site.uottawa.ca

Gregor v. Bochmann

School of Electrical Engineering and

Computer Science

University Of Ottawa

(613)562-5800*6205

(613)562-5664

bochmann@eecs.uottawa.ca

http://www.eecs.uottawa.ca/~bochmann/

Abstract: We developed a diffusive load balancing technique for P2P systems. This technique uses

the overlay network of a P2P system and results in the nodes of the network having similar

available capacities; therefore the services hosted on these nodes are expected to have similar

mean response times. In this paper, the technique is presented, including the policies, stages of

operation, and decision algorithms. The convergence of the available capacities to the global

average is demonstrated. The convergence speed depends on the decision algorithm, the

neighborhood structure of the underlying overlay network, and the workload distribution. When

used in a system with churn, the technique keeps the standard deviation of available capacities in

the system within a bound. This bound depends on the amount of churn and the frequency of the

load balancing operations, as well as on the distribution of node capacities. However, the sizes of

services have little impact on this bound. The paper presents the results of analytical analysis and

simulation studies.

Keywords- load balancing; diffusive load balancing; peer-to-peer systems; distributed algorithms;

performance management component

This version is for author’s self-deposit. The final

publication is available at www.sprinerlink.com.

2

I. INTRODUCTION

The performance issues of peer-to-peer (P2P) systems come from the characteristics of these

systems. The nodes in these systems may be heterogeneous in terms of their resource capacities,

geographic locations, or on-line periods (i.e. time of participation in the system). The services for

accessing the shared objects on the P2P nodes also have different resource requirements, and the

number of user requests, and the locations of users may change. In these systems, some user

requests may be delayed or even lost by some nodes, while other nodes are idle. Also, the mean

response times of the requests that access the same object on the same node could vary over time

because of changing request rates.

Load balancing techniques are proposed to solve these issues. These techniques dynamically

reallocate nodes or shared objects in the P2P system so that they could provide a more uniform

quality of service for their services. Using distributed approaches, these techniques are scalable to

large sizes of P2P systems. However, these techniques either rely on some specific structures of the

overlay networks or construct their own structures therefore inducing extra messages. For example,

some techniques, such as the one in the BATON system [26] or in the DPTree system [16], use the

tree structure of an overlay network for their operations. These techniques can not be deployed in an

overlay network using another kind of structure. Some techniques require the system to construct a

structure based on their P2P overlay networks (e.g. [10, 11]) only for load balancing. Or, some

techniques use random walks (e.g. [7, 14]) in their load balancing operations. These random walks

add extra messages to the P2P system.

We developed a diffusive load balancing technique for P2P systems. It uses a diffusive load

balancing scheme, originally proposed for parallel computing systems that have a massive number

of processors. In order to deal with the characteristics of P2P systems, this diffusive scheme

specifies that the P2P nodes run the load balancing operations asynchronously. During each

operation, a node collects the load statuses (i.e. the available capacities) of its neighbors in the

overlay network, and decides load transfers (i.e. object movements) between these neighbors so that

the neighbors could have similar mean response times for their services. A global balanced state,

where all nodes have the same mean response time, can be achieved by this kind of local load

balancing. Compared with other techniques proposed for P2P systems, the diffusive technique

neither sets up extra connections between nodes nor spends a large number of messages on random

walkers in the system.

The following sections are organized for presenting different aspects of the proposed scheme.

Section 2 reviews peer-to-peer load-balancing techniques and diffusive load-balancing schemes

studied for parallel computing systems. Section 3 presents the design of the proposed diffusive

scheme for systems with fine-grained services, including its policies, the stages of operation, and

the decision algorithms. This section examines the convergence of the scheme and compares the

effectiveness of the decision algorithms in systems with a skip-list overlay structure. It further

discusses the impact of the characteristics of P2P systems on the effectiveness of load balancing,

including the structure of the overlay network, workload distribution, churn (node joining or

leaving), and nodes with heterogeneous capacities. Section 4 presents the decision algorithms for

the diffusive scheme to deal with large-sized services. The section further studies the impact of the

3

service size on the effectiveness of load balancing. Section 5 compares the diffusive scheme with

other schemes for P2P systems proposed in the literature, discusses the practical realization of load

transfers in a real P2P system, and concludes the paper.

II. BACKGROUND

A. Load balancing techniques for P2P systems

The load balancing techniques proposed for P2P systems either allocate or relocate service

objects onto nodes in these systems, or relocate nodes such that the users accessing these objects see

a uniform response time. These techniques have policies to specify when and where to perform load

balancing operations, and how to decide object locations/relocations during these operations. Since

P2P systems have large sizes, these techniques also specify various structures and algorithms to

detect the load status of the system and to decide load transfers between nodes.

These load balancing techniques differ in the structures by which they organize the nodes. This

results in differences of the effectiveness of load balancing. A linked-list structure is the simplest

structure used by techniques such as [3, 11, 12]. After a node conducted a load balancing operation

(which moves objects between nodes), all the nodes in its neighborhood (e.g. including itself and its

direct neighbors in the ring) have the same load. Vu et al. [11] shows that a simple load balancing

scheme like this is not effective in balancing the load variations in systems with churn. Normally,

another kind of scheme is used to further reduce the load variations.

Other structures, such as tree, distributed directory, or neighborhoods with randomly probed

nodes, are also used for load balancing. For example, in the tree structure of BATON [26], a parent

node works as a decision component (or directory) for balancing the loads for its sub-trees. The

system is load balanced when the sub-trees of the root have equal loads. However, this load

balancing can not be applied to systems with other kinds of structure. The distributed directories

proposed in [8] is another structure used for load balancing. A node registers to a directory at

random and stays there for some time, while the directory balances the loads of its registered nodes.

However, the directory (central or distributed) scheme can not deal well with the dynamics of a P2P

system and the running period of the directory must be engineered [7]. Some schemes, such as those

in [5, 7, 13, 14], construct neighborhoods by using random walks. A node probes some other

random nodes for sharing their excess loads.

Some schemes use structures to aggregate the global load information for load balancing. These

schemes are criticized because of the cost of collecting the global information and the limited

freshness of this information. For example, the k-ary tree scheme [10] constructs a tree structure

based on Chord for aggregating the global load information from the leaf-nodes to the root node,

and for disseminating this information from the root to the leaves. The global information is used by

the leaves to identify their state (either overloaded or under-loaded). Shen et al. [7] showed that the

system using the scheme does not deal well with load variations due to churn (i.e. the loads of nodes

have a large variance). Shen also revealed that, compared to other schemes, the k-ary tree scheme

induces a larger number of messages. To avoid the cost of constructing a tree, the scheme for the

DPTree system [16] generates a global map that is circulated among nodes. The map is updated

during the circulation. However, the map itself reflects a tree structure; this prevents the scheme

4

from being used in systems with another kind of structure. The Histogram scheme [11] constructs a

structure for aggregating the global load information in a structured P2P system. Although the

scheme keeps a smaller load imbalance for a P2P system than a scheme using a sender-initiated

policy, the aggregation introduces message overhead. Random walks are sometimes used in

estimating global load information for load balancing, such as in Mercury [12]. However, in order

to precisely estimate the global load distribution, the scheme has to use)(log NO random walks for a

system that has N nodes. These random walks add extra overhead to the system.

B. Diffusive load balancing schemes

Diffusive load balancing schemes (also called diffusive schemes in this paper) are studied for

balancing the computations of parallel computing programs over the nodes in parallel computer

systems. These schemes are classified as synchronous or asynchronous schemes. A synchronous

scheme specifies that all nodes, which are coordinated by a global clock, run load balancing

operations at the same time. These operations conduct the activities such as reporting load statuses

of nodes to neighbors, deciding load transfers, and transferring loads. Asynchronous diffusive

schemes do not require this kind of synchrony while nodes periodically conduct individual load

balancing operations. However, the delay for transmitting a message or transferring a load must be

bounded. Therefore, these schemes are also called partially asynchronous schemes.

Diffusive schemes normally use a sender-initiated policy, where a sender node (that is, an

overloaded node) decides and invokes the load transfers to receivers (that are under-loaded nodes).

These schemes differ in their decision algorithms which calculate the amount of load to be

transferred. Assuming that the objects (e.g. tasks, calculations or data items) on nodes are fine

grained, Boillat [17] derived an algorithm for a synchronous scheme from the Poisson diffusion

equation. Cybenko derived an algorithm in a similar way [18]. Bertsekas formalized a partial

asynchronous scheme in [20] by specifying that an overloaded node should send its load to under-

loaded nodes, especially the lightest loaded one, and, after a load transfer, the workload on the

sender should still be larger than that of the receiver. The partially asynchronous schemes in [21]

and [24] also specified the function for calculating the amount of workload to be transferred from

load senders to receivers.

A diffusive load balancing scheme converges if the workload of all nodes (asymptotically)

reaches the global average as time proceeds. It has been shown that the convergence speed of a

synchronous diffusive scheme could be optimal by choosing the portion of workload for load

exchanges between two neighbors according to the topology of a system [23]. If the load for an

exchange is equal to a proportion of the difference between the loads of two neighbors [24], a

scheme converges faster in a system with a hypercube or torus topology, where, compared with a

ring or a linear network, the network has a symmetric graph and a smaller diameter.

Because of these properties, we propose an asynchronous diffusive scheme for load balancing in

P2P systems.

III. DESIGN OF THE DIFFUSIVE LOAD BALANCING SCHEME

The proposed diffusive scheme is different from the other load balancing schemes for P2P

systems in terms of the load index (i.e. the measure used for indicating the load statuses of nodes),

5

the policies for applying load balancing operations, and the stages of these operations. In this

section, we describe the scheme in terms of these aspects and analyze its convergence speed. We

also analyze the impact of the neighborhood structures, workload distributions, churn, and the

heterogeneity of the node capacities on the effectiveness of load balancing.

A. Load index

P2P nodes are expected to provide services with a uniform mean response time, like the servers

in a client/server system [9]. But, the load balancing techniques proposed for P2P systems in the

literature can not achieve this purpose. For example, some load balancing schemes that equalize the

amount of data or number of virtual servers on the nodes [2, 3] do not deal with nodes with

heterogeneous capacities. Some other schemes bring the utilizations of nodes to the average of the

system [8, 10]. It can be shown that, when two server nodes with different capacities have the same

utilization, their mean response times might not be the same. That is, the requests arriving at the

node with the higher capacity would experience a smaller mean response time. Therefore, these

schemes do not equalize the response times of services on different nodes.

The proposed scheme considers the available capacities of the nodes as load index that must be

equalized. The performance of a server in a client/server system is normally modeled as an M/M/1

queuing system. According to [19], we have

[]
λµ

µ

λ −
=

−

=Ε
1

1

1

ur

(Equation 3.1)

which indicates that the mean response time for requests][rΕ is the inverse of the difference

between the service rate µ and the arrival rateλ of requests on the server. We take the number of

user request that can be processed per time unit as the measure of the (total) capacity of a node,

normally written µ . Using the same units, the used capacity, normally written λ , is the number of

user requests arriving per time unit. Then the available capacity is the difference between µ and λ .

Equation 3.1 shows that, in the case that two server nodes have the same available capacity, the

mean response times of their requests are the same. The equation also applies to the case where the

two servers have different capacities. We conclude that, in the case that the nodes in a P2P system

have the same available capacity, the mean response times of the requests of the system are the

same. Therefore, the purpose of the diffusive load balancing is to obtain similar available capacities

for all nodes so that the services provided by the system could have a more uniformed mean

response times or quality of service for their services.

In order to show that equalizing the available capacity leads to similar response times also in

situations where the response time of each node is not accurately modeled by an M/M/1 queue, we

compared in [27] two load balancing techniques for systems with nodes modeled as GI/G/1 queues:

one equalizes the available capacities of nodes, the other their utilizations. This study showed that

the first technique leads to more similar response times than the second. Using the first technique,

the system has a smaller expected value and a smaller variance for the mean response times of

nodes. Also, the variance of the mean response times is bounded by a fixed value. In a system using

the second technique, this variance is bounded by ρ−1

1

where ρ is the equalized utilization.

6

The diffusive schemes for parallel computing systems have different load indexes for equalizing

the amounts of computation on the nodes. Clearly, those load measures do not reflect the dynamic

arrival and departure of requests on the nodes. Therefore, they are not appropriate for load

balancing in P2P systems.

B. Load balancing operations and their decision algorithms

The proposed scheme specifies load balancing policies for its operations that periodically run on

nodes of the P2P system. The information policy specifies that a node periodically runs an operation

to collect load information from its neighbors. The transfer and location policies specify the

selection of the senders and receivers for load transfers within a neighborhood. A load balancing

operation realizes these policies. We call the node that is executing a load balancing operation the

operating node, and its neighborhood includes the operating node itself and its direct neighbors

within the overlay network.

An operation goes through the following three stages:

Load determination: In this stage, the operating node collects the available capacities of its

neighbors by sending probing messages. A probed neighbor responds with its available capacity if it

is not involved in another balancing operation. The operating node waits for these responses.

Decision: First, the operating node calculates the average available capacity for the

neighborhood. A node is identified as a candidate load-receiver (load-sender) of load if its available

capacity is larger (smaller) than the average. Then, a decision procedure identifies one or several

receiver-sender pairs and sends a load transfer request to the sender of each pair, including the ID of

the selected receiver (which is the target of the load transfer) and the amount of load to be

transferred (called required capacity). The detail of the decision procedure depends on the decision

algorithm. We will discuss different decision algorithms in the following sections.

Load transfer: During this stage, loads are transferred between the determined senders and

receivers.

After having performed an operation, the operating node will go back to process the normal

service requests until the time has come for another load balancing operation. Operations on

different nodes are not synchronized. These operations may run concurrently on different nodes,

however, a node involved in one such operation will refuse the participation in another load

balancing operation initiated by one of its neighbors. In this way, the load status information

collected from a neighbor during an operation is always correct.

We consider the following algorithms that could be used in the decision stage of a load

balancing operation: the Proportional, Complete Balancing (CB), Directory-Initiated (DI), Sender-

initiated (SI) and Receiver-initiated (RI) algorithms. We assume that objects have sizes of fine

granularity, which means that workloads of arbitrary sizes can be transferred; we also assume that

they can be moved to any neighbor in the system. We will discuss the interaction of these load

transfers with the search algorithm in the P2P system in the last section.

We introduce the following notations. The operating node of a load balancing operation is called

node i. The neighborhood of the operating node is denoted as iA , and the number of nodes in the

neighborhood is iA . A node in iA is identified as a node j. A node x has a node capacity equal to Cx.

7

If a node has services with a total resource requirements of lx, its available capacity is xxx lCavc −= .

We write avcx and xcav ′
 to represent the load status of node x at the beginning and at the end of an

operation, respectively. For example, when services with resource requirements l have been

transferred from node x to y at the end of an operation, we have lavccav
xx

+=′
 and

lavccav yy −=′
.

1) Proportional algorithm

The Proportional algorithm (Prop.) has been discussed in [23], and we assume that the algorithm

uses the available capacities of nodes as load index. Here, the decision algorithm determines the

following load exchanges between node i and all other nodes j in its neighborhood: load equal to

k(avci-avcj) will be transferred from node j to node i (if the value is negative, the exchange

proceeds in the opposite direction), where k is a constant between zero and one. At the end of the

operation, when all exchanges have been performed, the new available capacities are as follows:

∑+−=′
j

jii avckavcdkcav)1(

 for i where
1−= iAd

, and ijj kavcavckcav +−=′)1(
 for any neighbor j

other than i.

2) Complete Balancing algorithm

The Complete Balancing (CB) algorithm (also described in [23]) equalizes the available

capacities of all nodes in the neighborhood of node i during an operation. The average available

capacity of the nodes in the neighborhood of node i (including node i) is

i

Aj

j

A
A

avc

avc i

i

∑
∈

=

(Equation 3.2)

The CB algorithm determines load exchanges such that at the end of the operation all nodes in

the neighborhood have the same average available capacity.

3) Directory-Initiated algorithm

The Directory-Initiated (DI) algorithm is similar to the algorithm proposed in [4] for parallel

computer programs. This algorithm also calculates the average available capacity of the

neighborhood by using Equation 3.2. Based on the value of the average, the algorithm identifies

nodes as overloaded (if its available capacity is smaller than the average), under-loaded (if its

available capacity is larger than the average), or equalized. The overloaded nodes are kept in a

vector SVect, and the under-loaded nodes in a vector RVect. The algorithm uses the procedure

shown in Figure 1 to decide service migrations.

In the case that none of the vectors is empty, the procedure selects a pair of a sender s and a

receiver r such that the two nodes have the largest difference between their loads among all the

nodes remaining in the two vectors (line 3 and 4). Otherwise, the procedure stops (line 2). Line 5

decides the load that should be moved between s and r so that the sender s would not be under-

loaded and the receiver r would not be over-loaded after the load transfer. The procedure continues

after removing s from SVect and r from RVect.

8

Decision Procedure

1 Do forever

2 if SVect and RVect are not empty

3
}{min j

SVectj
avcs

∈
=

4
}{max j

SVectj
avcr

∈
=

5 tr =
},min{

ii ArsA avcavcavcavc −−

6 Send instruction to s and r with load equal to tr for the transfer;

7 remove s from SVect and r from RVect

8 else break;

9 End of Do

Figure 1: The decision procedure of the DI algorithm

4) Sender-Initiated and Receiver-Initiated algorithms

Like the DI algorithm, the Sender-Initiated (SI) and Receiver-Initiated (RI) algorithms identify

overloaded and under-loaded nodes according to the average. However, in the SI (RI) algorithm,

node i is identified as a sender s (a receiver r) if its available capacity is smaller (larger) than the

average; otherwise, no load transfer will take place. Similar algorithms have been proposed for

parallel computing systems in [6].

The procedure for deciding the load transfer is shown in Figure 3.2. The load to be transferred

out from node s (called requiredavc
) is the difference between the average and the available capacity of

s (line 1). The total providable available capacity (called providable
avc

) is obtained from the available

capacities of all under-loaded nodes. The load to be transferred into a receiver is proportional to its

providable available capacity (line 6). The under-loaded nodes in RVect are considered one by one

for deciding a load transfers.

The RI algorithm has a similar procedure where the receiver takes the role of the sender in

Figure 2, and its exceeding available capacity (i.e. providable available capacity) will be distributed

to all the overloaded nodes.

Decision Procedure

sArequired avcavcavc
i
−=

∑
∈

−=
RVectr

Arprovidable i
avcavcavc)(

Do forever

 if RVect is not empty

 for a node r in RVect

 tr = providableArrequired avcavcavcavc
i

/)(−

 send instruction to r with load equal to tr for the transfer

 remove r from RVect

 else break;

End of Do

Figure 2: The decision procedure of the SI algorithm

C. Analysis of the scheme

In this section, we consider a P2P system with a static workload, where the workloads of the

services performed on the nodes of the P2P system do not change over time. We will study here

how the asynchronous, diffusive load balancing scheme leads the system to change from any initial

state (e.g. where the loads of the nodes are uniformly distributed) to a globally balanced state

9

(where all nodes have the same available capacity). First, we discuss the convergence of the

diffusive scheme from an analytical viewpoint, and then we present some simulation studies which

provide a more detailed comparison of the different decision algorithms.

1) Analytical considerations

The function that the Proportional algorithm uses to calculate the new available capacities of

nodes is the function of an asynchronous diffusion scheme presented in [23] where workload is

replaced by available capacity. The proof in [23] shows that, after an operation, the variance of the

workload of all nodes in the system is decreased by a given factor a (smaller than 1). This means

that the variance follows a geometric series of values which converges to zero. Hence, the

Proportional algorithm converges when it uses the available capacity as load index. We can provide

similar proofs of convergence for the other decision algorithms as follows.

We first discuss the CB algorithm in detail. We assume that there is a P2P system that consists

of N nodes, and the global average of the available capacities of its nodes is N

avc

AVC
j

j∑
=

. We write

N

avcAVC

avc
j

j∑ −

=

2

2

)(

)(σ
 for the variance and ()avcσ for the standard deviation of the available capacities in

the system at the time before a node i starts its load balancing operation. Now we want to calculate

the variance of the available capacities after this operation, written)(2 cav ′σ . We have Equation 3.3

to calculate the variance of available capacities:

()

()

() ()∑∑

∑

∉∈

′−+′−=

′−=

′

ii Aj

j

Aj

j

j

j

cavAVCcavAVC

cavAVC

cavN

22

2

2σ

(Equation 3.3).

At the right side of the equation, there are two terms. The first term is a sum over all the nodes j

that are within the neighborhood Ai (including i), and it is equal to
()2

iAi avcAVCA −
, where iAavc is the

average of the available capacity of the nodes within i’s neighborhood and iA
 is the number of

nodes in this neighborhood. Then, we write

()[] ()[] () 







′−Ε+−Ε=′Ε ∑

∉ i

i

Aj

jAi cavAVCavcAVCAcavN
222σ

(Equation 3.4).

where the notation][XΕ represents the mean of the random variable X. Since the local average iAavc

is obtained over a set of iA
 nodes, the mean of iA

avc
is AVC , and in the first term of Equation

3.4, []2)(
iAavcAVC −Ε is the variance of iA

avc
which is equal to

)(
1 2 avc
Ai

σ

. We assume that iA
 is the

same for all nodes i. Since, in Equation 3.4,)()]([22
cavNcavN ′=′Ε σσ for all available capacities in

the system, and the second term at the left of the equation evaluates to)()(2
avcAN σ− , we obtain

() ())(1
22

avcANcavN σσ +−=′
, or

)(
1

1)(22
avc

N

A
cav σσ 







 −
−=′

(Equation 3.5).

Since Equation 3.5 holds for any local load balancing operation that is performed by any node in the

system, we see that the value of the variance follows a geometric series that converges to zero.

10

Now we are interested in estimating by which factor the variance decreases over a period of one

round. A round is the time interval within which each node of the overlay network is supposed to

have performed exactly one load balancing operation. We denote the variance of available

capacities at the end of round t as)(2 tavcσ and the standard deviation as)(tavcσ . Since there will be

N load balancing operations within this period, we obtain the following equation:

() () ()12122
1

1
1

1
−−








 −
−=







 −
−= ∏ t

N

t

i

t
avc

N

A
avc

N

A
avc σσσ

(Equation 3.6).

Since |A| is much smaller than N, we can use the approximation
xn

e
n

x
=+)1(

for large integers n, and

obtain the following equation:

())(12)1(2 −−−
= tAt

avceavc σσ (Equation 3.7)

and

())(12

)1(

−

−−

= t

A

t
avceavc σσ

(Equation 3.8)

Therefore, for the period of one round, the variance of available capacities reduces by a factor of

1−A
e , and the standard deviation reduces by a factor of 2

1−A

e (derived from Equation 3.7). We call the

multiplier that indicates the change of the standard deviation in Equation 3.8 the convergence ratio.

Then, we can say that diffusive load balancing has a convergence ratio equal to 2

)1(−− A

e (or 2

1 A

e

−

) when

it uses the DI algorithm.

In the following, we discuss the convergence speed for the other algorithms: the DI, SI and RI

decision algorithms. These algorithms are more practical for real systems compared to the CB

algorithm. Using the CB algorithm, an operating node works as a receiver for some neighbors and a

sender for the others at the same time. This does not occur for the algorithms considered now.

However, they are expected to provide slower convergence than the CB algorithm, because at the

end of a load balancing operation by a node i, the available capacities of the nodes within its

neighborhood would be less uniform than in the case of the CB algorithm. For example, in the case

of the SI algorithm, half of the times, there is no change in the load distribution, namely when node

i is under-loaded and we have)()(22
avccav σσ =′ . If node i is overloaded, its available capacity will

reach the neighborhood average and the available capacity of each under-loaded node will be

increased by smaller amounts. If we consider the load change on the overloaded node and ignore

the changes of the under-loaded nodes, we obtain the formula
() () ()avcNavc

A
cavN

i

222
)1(

1
σσσ −+=′

. We

combine the above two formulas into the equation
() () () ()









−++=′ avcNavc

A
avcNcavN

i

2222)1(
1

2

1

2

1
σσσσ

–

note that we have ignored here the difference between the global average and the average within the

neighborhood. Then, we obtain

() ()avc
NA

A
cav

i

i 22

2

1
1 σσ 









 −
−=′

. If we assume ii AA ≈−1
, then, we obtain

() ()avc
N

cav
22

2

1
1 σσ 








−≈′

, and () ()122

1

2 −
−

≈ tt
avceavc σσ . Therefore we expect that the standard deviation

of available capacities is reduced over the period of one round by a factor of
25.0e approximately.

This would be similar for the RI algorithm.

11

The convergence speed of the DI algorithm is more difficult to estimate, since during a single

load balancing operation, several sender-receiver pairs exchange parts of their load. For each of the

resulting load transfers, one of the partners will reach the neighborhood average, but it is difficult to

estimate how many pairs will be identified and how much the load change of the other partner

contributes to the reduction of the variance. However, since the DI algorithm drives more nodes to

reach the average of the neighborhood during one operation than the SI or RI algorithms, it is clear

that the convergence speed of this algorithm is expected to lie between the speeds of the CB and SI

algorithms.

2) Simulation studies

Next, we study the convergence of load balancing with simulation experiments. The

convergence of a classical synchronous diffusive scheme, such as the one in [18, 23], was evaluated

by a convergence factor γ , which is the smallest reduction of the variance of loads during one

operation. Therefore, the convergence time derived from the factor (i.e. γln

1
≈t

) is the maximum time

that the scheme uses. We use a different method to investigate the convergence of an asynchronous

scheme. In our experiments, the convergence of the scheme is measured by the convergence ratio rt

during round t. rt is the ratio of)(
t

avcσ to)(1−tavcσ where)(
t

avcσ is the standard deviation of

available capacities at the end of round t. Therefore, rt is also the reduction ratio of the standard

deviation of available capacities. Using this method, the progress of load balancing can be

displayed.

These experiments use a simulated P2P system which is a modified version of the clustered P2P

system called “eQuus” [28], where each cluster has only one node. This system has a skip-list

structured overlay network. For example, for a system with N nodes, all nodes are first connected

into a ring according to the ascending order of their IDs. In addition, each node has fingers pointing

to the nodes at
k

2 positions further down on the ring ( Nk 2log,1,0 K=
). This structure is similar

to those used by many P2P systems (e.g. Chord, Pastry, or DPTree), where the time and message

complexities of a search can be maintained at)(log NO . In the following experiments, the simulated

systems have 1000 nodes. All 1000 nodes have the same capacity of 10 requests per second, and

initially, the available capacities of nodes are uniformly distributed in the range of [0, 10], with a

mean of 5 which leads to a standard deviation of 2.88.

We observed that, for a given decision algorithm, the convergence ratios in different rounds are

different. During the first round, the algorithm has the smallest convergence ratio with the largest

proportion of loads transferred, and the standard deviation of available capacities drops very

rapidly. In the following rounds, the algorithm has slower convergence ratios with fewer loads

transferred. We also observe that, after the experiment runs for 10 rounds, there are very few loads

transferred, and the standard deviation of available capacities approaches zero. We say that the

system is in the globally balanced state. Figure 3 shows the effectiveness of these decision

algorithms during the first five rounds. The measurements in the figure are averaged over 20

simulation runs, each. For each measurement, the mean and the 95% confidence interval of the

mean are displayed.

Figure 3 shows that these decision algorithms converge at different speeds. This confirms the

predictions of our analysis above. Among these algorithms, the CB algorithm converges most

12

rapidly. It has a convergence ratio r1 close to 0.002, which indicates that the standard deviation of

available capacities drops by 99.8% during the first round. Figure 3(a) further shows that the

standard deviation of the normalized available capacities drops from 0.573 to 0.001 in this round.

The normalized available capacities are the available capacities at the end of that round divided by

the average workload of the system. In the following rounds, the convergence ratios of the CB

algorithm remain as small as 0.01. The SI and RI algorithms converge much slower than the CB

algorithms (e.g. the standard deviation of available capacities drops by 78% in the first round with

r1 around 0.22). Among the practical algorithms (i.e. DI, SI and RI), the DI algorithm has the

strongest average convergence ratio which is close to the CB algorithm (with r1 around 0.02). This

observation indicates that resolving multiple pairs of senders and receivers, as done by the DI

algorithm, improves the effectiveness of diffusive load balancing. The Proportional algorithm

converges faster than the SI and RI algorithm but slower than the DI algorithm. The data in the

figure confirms the predictions of our analysis given above.

The amount of loads transferred between nodes is also collected for evaluating the cost of load

balancing. For transferring loads, a system has to spend some processing power of nodes for

packing and unpacking objects and some bandwidth of its network links for transmitting the packed

objects. A decision algorithm has a higher cost if it decides more transferred loads. The Proportional

algorithm requires transferring more loads than the DI, SI or RI algorithms. The DI, SI and RI

algorithms result in about 35% of the total loads to be transferred between nodes for the standard

deviation of available capacities to drop by 99% from the beginning.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
 n

o
rm

a
liz

e
d
 a

v
a
ila

b
le

 c
a
p
a
c
it
ie

s

round

Prop.
CB
DI
SI
RI

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

c
o
n
v
e
rg

e
n
c
e
 r

a
ti
o

round of load balancing

Prop.
DI

CB
SI
RI

 (a) (b)

 0

 20

 40

 60

 80

 100

1 2 3 4 5

p
ro

p
o

rt
io

n
 o

f
lo

a
d

s
 t

ra
n

s
fe

rr
e

d
 (

%
)

round of load balancing

Prop.
DI

CB
SI
RI

 (c)

Figure 3: The progress of the diffusive load balancing with various decision algorithms: (a)

standard deviation of normalized available capacities, (b) convergence ratio, and (c) proportion of

loads transferred

13

From the perspective of the convergence speed, the diffusive scheme is scalable for P2P

systems. We note that, using the diffusive scheme with the CB algorithm, the system has a

convergence ratio close to 2

1 A

e

−

 during one round (where
A

is the number of nodes in a

neighborhood). In a P2P system, the value of
A

 grows along with the increase of the system size,

normally logarithmically. Therefore, the larger the system size, the smaller is the factor, and the

faster the scheme converges. For example, for a system with a skip-list overlay network, in the case

that the system size is doubled from N to 2N, the convergence ratio of the CB algorithm would

reduce from
 

2

log1 2 N

e

−

 to
   

2

log

2

1log1 22 NN

ee

−+−

= (i.e. by 39.3%). We investigated the change of convergence

ratios in systems with different sizes (e.g. N=128, 256, 512, or 1024) through simulation

experiments. The DI algorithm is used. We observed that the convergence ratio r1 slightly drops

when the system size is doubled. After the system has its size increased by a factor of 8 (for

example, N increases from 128 to 1024), the reduction of r1 becomes close to 42.8% (r1=0.021 for

N=128, and 0.012 for 1024). The reduction is smaller than that calculated for the CB algorithm

(which is 77.6% in this case). During the following rounds, the convergence ratios for these systems

gradually increase to be as large as 0.3. We can further observe that the proportions of loads

transferred between nodes are almost the same for the different systems. Also, the effectiveness of

the scheme is not different when these systems are under the same situation of churn (see Section

3.6). These results show that the diffusive scheme is scalable to the large-sized systems.

D. Network structure

The impact of the network structure on the effectiveness of diffusive load balancing has been

intensively studied by considering ring, hypercube, or star topologies (see [17, 18, 24]). In this

section, we consider a structure of random neighborhoods for load balancing operations. We

consider two kinds of random neighborhoods. One is called random-graph neighborhoods, which

are the neighborhoods in a network with a random-graph topology. Another is called random-walk

neighborhoods, which are the neighborhoods that are obtained by dynamic random walks, a

different neighborhood for each load balancing operation. A node with a neighborhood of either

kind has  N2log neighbors.

We observed that the network structure of a system has an impact on the convergence speed of

an algorithm. It has little impact on the CB algorithm since we see that the convergence ratio r1 is

around 0.003 for either kind of random neighborhoods. This value is also close to that for the skip-

list neighborhoods. When the random-graph neighborhoods, instead of the skip-list neighborhoods,

are used, the other algorithms have their convergence speeds degraded. The Proportional, SI and RI

algorithms have their convergence ratios increased by 10% (see Figure 4(a) to be compared with

Figure 3(b)). The DI algorithm has its convergence ratio increased by a factor of about 2 to 4 (for

the skip-list neighborhoods, r1 is around 0.012, and r5 around 0.30, in Figure 3(b); for the random-

graph neighborhoods, r1 is around 0.046 and r5 around 0.6, in Figure 4(a)).

14

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

c
o

n
v
e

rg
e

n
c
e

 r
a

ti
o

round of load balancing

Prop.
DI

CB
SI
RI

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

c
o

n
v
e

rg
e

n
c
e

 r
a

ti
o

rounds

Prop.
DI

CB
SI
RI

 (a) (b)

Figure 4: The convergence ratios of diffusive load balancing with different neighborhoods: (a) in

an overlay network with a random-graph topology, and (b) with neighborhoods collected by

random walks

The situation is different when random-walk neighborhoods are used, as shown in Figure 4(b);

only the classic Proportional algorithm does not perform well. The standard deviation of available

capacities at a level of around 0.05 can not be further reduced even after the experiment runs for 50

rounds. The SI and RI algorithms perform better with random-walk neighborhoods. Starting from

round 2, their convergence ratios become much smaller than those for static overlay network

neighborhoods (either the skip-list neighborhoods or random-graph neighborhoods). Using random-

walk neighborhoods, a node has more chance to be a sender or a receiver when it runs operations

with different neighborhoods each time, and the reduction of the load differences is also larger than

in the case of overlay network neighborhoods. Using random-walk neighborhoods, the DI algorithm

has similar convergence ratios as those for skip-list neighborhoods. Meanwhile, we observe that the

proportion of loads transferred between nodes in a system using the DI, SI or RI algorithm is very

similar to that in the previous case (see Figure 3(c)).

E. Workloads with highly skewed distributions

In this section, we investigate the decision algorithm in situations with highly skewed

distributions of workloads, like the Zipf distribution in [22]. The simulated systems have different

workload distributions. We observed that, in these systems, the convergence speeds of a decision

algorithm are different at the beginning of load balancing. Afterwards (e.g. after one or two rounds),

the speeds do not change much. We also observed that the SI algorithm handles workloads with

extremely skewed distributions better than the DI algorithm.

To simulate a skewed workload distribution, we considered a situation where a certain

proportion of the nodes are hot spots (e.g. 0.001, 0.01, 0.1, 0.2, or 0.4 of all nodes). At the

beginning of an experiment, the workload is evenly distributed over all the hot-spots. The DI and SI

algorithms are used for the following experiments. One of two kinds of neighborhoods is used:

either the skip-list or random-walks neighborhoods. Figure 5 only displays the r1 for each of the

cases since we observed that, along with the progress of load balancing, the convergence ratios (e.g.

r5) depend on the decision algorithm and the kind of neighborhoods rather than the number of hot

spots.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

0.001 0.01 0.1 0.2 0.4 uniform

c
o
n
v
e
rg

e
n
c
e
 r

a
ti
o

hot-spot workload

DI, skip-list
DI, random
SI, skip-list
SI, random

Figure 5: Comparison of the DI and SI algorithms in systems with hot spots

The SI algorithm outperforms the DI algorithm when the system has an extremely small

proportion of hot spots, like 0.001. However, the advantage of the SI algorithm drops when the

convergence speed of the DI algorithm increases with the increase of the proportion of hot spots.

For the 0.001 hot-spots case, Figure 5 shows that the SI algorithm has an r1 of 0.19, but the RI

algorithm has 0.35. For the 0.1 hot-spots case, the convergence ratios of the DI algorithm are close

to those observed from the previous experiments where the system initially has a uniform workload

distribution. However, the speed of the DI algorithm will not increase much even if the system

further increases the proportion of hot-spots. One reason for this is that, in the 0.001 case, a

neighborhood could have one or zero sender with a larger probability at the beginning of the

experiment. Since the DI algorithm only selects one receiver for a sender, the DI algorithm resolves

fewer differences between the available capacities of the nodes than the SI algorithm which can

select many receivers for one sender. Therefore, we conclude that the workload distribution has

little impact on the convergence speed of the SI algorithm (with convergence ratios of r1 around

0.2), but, it has an impact on the DI algorithm, which reduces the convergence speed when the

workload distribution is extremely skewed.

F. Churn

In this subsection, we investigate the effectiveness of diffusive load balancing in a system that

experiences churn. Churn occurs when nodes join or leave the system. This involves changes of the

overlay network and the distribution of workloads. We analyzed the variance of the available

capacities in a system with churn.

In the simulated system, churn is realized by adding or deleting nodes from the network. We use

the functions provided by the SSim library [29] (i.e. a library used for discrete-event simulation) to

schedule the events for joining and leaving nodes. The events of nodes joining or leaving are

modeled by a Poisson arrival process where the inter-arrival times of these events follow an

exponential distribution. In the following, we use the term churn rate to measure the intensity of

churn; it is defined as the fraction of nodes that join or leave the system during one round of load

balancing. In this way, the changes of available capacities of nodes caused by churn and the

reduction of the differences between these available capacities produced by the diffusive load

balancing are measured within the same time period. We assume that, for each node that leaves,

there is a node that joins so neither the total number of nodes nor the system's average available

capacity changes. For example, when the churn rate is 0.1 in a system with 1000 nodes, 50 nodes

16

will join and 50 nodes will leave during one round. If the duration of a round is T , the mean inter-

arrival time of joining or leaving events is 50

T

. Without load balancing, the standard deviation of the

available capacities will increase as time proceeds. This increase depends on the churn rate in the

network.

Using the proposed diffusive load balancing scheme in a P2P system with churn, we observed in

our simulation experiments that the standard deviation of available capacities depends linearly on

the average workload of the system. According to the analysis of Cybenko in [18], when a system

with dynamic workload uses a synchronous scheme, the variance of loads on nodes after a load

balancing operation can be calculated as
() ()

2

2

02

1 γ

σ
σ

−
=′

l
l

 where ()l2

0σ is the variance of the dynamic

workload introduced during one round, and
γ

is the convergence factor of the scheme. In a P2P

system like Chord, a leaving node passes its workload to its predecessor, and a newly joined node

takes over half of the workload of its successor. We assume that all nodes have the same capacity C.

The workloads of the nodes are represented by a random variable l with a mean value l . The

system is load-balanced before a change of the network (i.e. a single join or leave event). Therefore,

the variance of available capacities introduced by the change is:

N

l

N

l
l

ll

llCavc

4

5
)

2
()2(

)()()(

2
22

2

0

2

0

2

0

=
−+−

=

=−= σσσ

(Equation 3.9).

Therefore, according to Cybenko’s equation, we suggest that the standard deviation of available

capacities is a linear function of the average workload in the system. In our experiments, we

observed that the larger the average workload, the larger is the standard deviation. Moreover, for

systems that differ only on their average workloads, the ratios of the standard deviation of available

capacities to the average workload of the systems (i.e. those with homogeneous nodes) are always

the same. Therefore, we define this ratio as the standard deviation of normalized available

capacities and use it as a parameter for comparing the performance of different decision algorithms.

The proposed scheme controls the standard deviation of available capacities (or normalized

available capacities) within a bound. In the following experiments, a system uses the DI or SI

algorithm with the skip-list or random-walk neighborhoods. Figure 6 shows the data for the first 20

rounds of load balancing. We observe that, after a few rounds (e.g. 2 or 3 rounds), the system is in a

steady state where the standard deviation of available capacities (or normalized available capacities)

and the proportion of loads transferred are steady. We see that the average of the standard deviation

of available capacities in the steady state is bounded.

Also the size of the bound for the standard deviation of available capacities (or normalized

available capacities) depends on the decision algorithm. An algorithm with a faster convergence

speed can maintain a smaller bound for the system. For example, for the case of the SI algorithm,

the bound is about 30% larger than for the DI algorithm (0.15 for the DI algorithm and 0.2 for the

SI algorithm). Furthermore, we note that the bounds, for a given algorithm using different kinds of

neighborhoods, are not significantly different. Figure 6(b) indicates that the costs of load balancing

17

are similar for both decision algorithms. Both these algorithms invoke almost the same proportions

of loads transferred when the system is in the steady state. The proportion for a decision algorithm

does not depend on what neighbors are used: a skip-list overlay network, or probed by random

walks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
 n

o
rm

a
liz

e
d

 a
v
a

ila
b

le
 c

a
p

a
c
it
ie

s

round

DI,skip-list
DI,random
SI,skip-list
SI,random

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

p
ro

p
o
rt

io
n
 o

f
lo

a
d
s
 t
ra

n
s
fe

rr
e
d
 (

%
)

round

DI,skip-list
DI,random
SI,skip-list
SI,random

 (a) (b)

Figure 6: Effectiveness of diffusive load balancing in a system with churn at a rate of 0.1: (a)

standard deviation of normalized available capacities, and (b) proportion of loads transferred

The system has its available capacities bounded by a higher value when the churn has a larger

rate. Also, the DI algorithm brings smaller bounds to the system than the SI algorithm; the larger the

churn rate, the larger is the difference between the two algorithms. In the experiments of Figure 7,

the churn rates vary from 0.1 to 0.9 with an increment of 0.1. A rate of 0.01 is also used as an

exception. The bounds and their 95% confidence intervals were collected from the experiments

which were run 20 times. The average workload of a simulated system is equal to 5

requests/second. Figure 7(a) shows the bounds when a system has different churn rates. In a system

that has a churn rate of 0.1, the bound is around 0.7 (with a bound for normalized available capacity

of 0.139 in the figure) for the DI algorithm with the overlay network neighborhoods. In this system,

few nodes would have an available capacity less than zero and be overloaded. In the case that the

system has churn with a rate of 0.9, the bound becomes 1.5 (with a bound of normalized available

capacity of 0.3 in the figure), and there are less than 10% of nodes overloaded. We further observed

that the bound is not a linear function of the churn rate. We observed that the size of the bound also

depends on whether the DI algorithm or SI algorithm is used. When the churn rate is as small as

0.01, the bounds for the two algorithms are not significantly different. The difference between these

bounds increases when the rate increases. When the churn rate is as large as 0.9, a system using the

SI algorithm would have a bound twice as large as a system using the DI algorithm (0.6 for the SI

algorithm, and 0.3 for the DI algorithm). However, the system has fewer loads transferred when it

uses the SI algorithm (Figure 7(b)).

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
 n

o
rm

a
liz

e
d

 a
v
a

ila
b

le
 c

a
p

a
c
it
ie

s

rate of churn

DI, skip-list
SI, random

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
ro

p
o

rt
io

n
 o

f
lo

a
d

s
 t

ra
n

s
fe

rr
e

d
 (

%
)

rate of churn

DI, skip-list
SI, random

 (a) (b)

Figure 7: The bound of the standard deviation of normalized available capacities in systems with

varying churn: (a) the standard deviation of normalized available capacities, and (b) proportion of

loads transferred

Although the size of the system does not change in the above experiments, the bounds obtained

in these experiments are realistic also when the system size may change. In a real P2P system, the

rates of node joining and leaving may be different. In this case, the size of the system will change,

e.g. the size will increase if the joining rate is higher than the leaving rate. As long as the rate

difference is a small fraction of the leaving (or joining) rate, we expect that the bound of the

standard deviation of the normalized available capacity would be very close to the bound obtained

for the stationary system state in our simulations. When the system size changes, the expected

bound may therefore be obtained by interpolating the bounds obtained by our simulations for the

different fixed system sizes.

G. Heterogeneous node capacities

Since the proposed load balancing scheme equalizes the available capacities of nodes, systems

with heterogeneous nodes capacities can have similar mean response time for their services. In a

system without churn, the convergence of the scheme does not depend on whether the nodes are

homogeneous or heterogeneous. Therefore, our experiments that use systems without churn in the

previous sections are all valid. However, for a system with churn, the variation of workloads

introduced by the leaving or joining of nodes depends on the capacities of nodes. The larger-

capacity nodes which have larger workloads would induce larger variations than the smaller-

capacity nodes (assuming that all nodes have the same available capacity).

In the following experiments, the system has two types of nodes: small-capacity nodes with a

capacity of 10 requests/second, and large-capacity nodes with a capacity of 1000 request/second.

There are 1000 nodes among which 0.1% are large capacity nodes, and the others are small capacity

nodes. The churn rate is 0.1. In Figure 8, there are several extraordinary points with standard

deviations much higher than other points. These points are caused by the leaving or joining of the

high capacity nodes. As we observed in Section 3.5, the DI algorithm has larger convergence ratios

in the one-hot-spot case than the SI or RI algorithm. We propose to modify the DI algorithm and

allow the sender (or receiver) to distribute its excess workload (or available capacity) to all the

under-loaded (or overloaded) nodes in the neighborhood in the case that there is only one

overloaded (or under-loaded) node in the neighborhood. This modification is expected to improve

19

the performance of the DI algorithm to deal with hot-spots. The solution in [15] that partitions a

node into several virtual nodes and locates these virtual nodes in different places of the overlay

network is an alternative approach.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50
s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
 a

v
a
ila

b
le

 c
a
p
a
c
it
ie

s

round

DI

Figure 8: Effectiveness of the diffusive load balancing in the heterogeneous node system with a

churn rate of 0.1

IV. DECISION ALGORITHMS DEALING WITH LARGE-SIZE SERVICES

The sizes of services of P2P systems could be fine-grained or large. The size of a service

represents the resource requirements of the service, and it is equal to the amount of resources that

the service uses to respond a request. In the previous section, we saw that the diffusive scheme can

completely equalize the available capacities for a system with fine-grained services. However,

working in systems with large-size services, the load balancing scheme can not exactly equalize the

available capacities, because the differences between available capacities can not be completely

resolved if only large-size services could be exchanged. In this subsection, we propose two decision

algorithms for the diffusive scheme to deal with large-size services.

The two algorithms are variations of an algorithm proposed in [19], which used a sender-

initiated policy and considered tasks with equal amounts of resource requirements. Our algorithms

use a directory-initiated policy and consider the amount of resource requirements of services instead

of the number of services on the nodes. They are intended for systems with homogeneous services

(i.e., all services have the same resource requirements) and for systems with heterogeneous services

(i.e., services have different resource requirements), respectively. We investigate the remaining

standard deviation of available capacities and the impact of the sizes of services on this standard

deviation. We use the same notations as in Section 3 to describe the algorithms. As earlier, we

assume that the overlay network would update the destination of a shared object or a virtual server

during a load transfer.

A. Decision algorithms for large sized services

1) Homogeneous services

Here we describe a decision algorithm called DIHomoService for the diffusive scheme to deal

with services of homogeneous size. Similar to the DI algorithm, this algorithm calculates the loads

for load transfers between pairs of senders and receivers. It shares with the DI the process for

identifying the states of nodes as overloaded or under-loaded and selecting a pair of sender and

receiver. However, it calculates the number of services to be transferred rather than the amount of

load to be transferred. Figure 9 shows a segment of this algorithm. This segment replaces the lines 5

20

to 8 of the DI algorithm shown in Figure 1. We assume that the resource requirements of services

are equal to L. The number of services for a load transfer is calculated at line 5 where the symbol

 x is the floor function of a real number x, equal to the integer part of x.

5

{ }







 −−
=

L

avcavcavcavc
tr ii ArsA ,min

6 if tr > 0

7 decide the transfer with the number of services as tr

8 remove x from SVect

9 remove y from RVect

10 else break;

11 else break;

12 End of Do

Figure 9: The segment of DIHomoService algorithm replacing lines 5 to 8 of the DI algorithm

shown in Figure 1

Following the above procedure, the diffusive load balancing procedure eventually stops. We

assume that the system has a static workload and no churn. Cedo et al. [1] presented assumptions

for a general model of a partially asynchronous load balancing scheme to converge or stop in a

system with the equal-sized tasks. We show that our scheme with the DIHomoService algorithm

has stronger properties compared with this general model. First, the proposed scheme allows only

one node to run an operation at a time in a neighborhood. This guarantees that the load status of a

neighborhood is always fresh and correct during an operation. Second, since the DIHomoService

decides load transfers for multiple pairs of senders and receivers, the proposed scheme has a

stronger load balancing power than the general model which uses a sender-initiated policy for load

transfers. Third, the DIHomoService also guarantees that scav ′
 is less than rcav ′ for a pair of sender

and receiver. Hence, like the general model, our scheme using the DIHomoService will eventually

stop (in a system with a static workload), and the system enters a globally stable state thereafter.

We further claim that after the system enters a globally stable state, the local load imbalance (i.e.

the maximum difference between the available capacities in a neighborhood) is bounded to 2L. In

the case that the decision algorithm of an operation decides no load transfer to be done between two

nodes, for example, between the sender s1 of SVect and the receiver r1 of RVect, either

Lavcavc sAi
<− 1 or Lavcavcr <−1 holds. Then, the inequality Lavcavc sr 211 <− holds. In the

neighborhood, there is no receiver that could be located as a receiver for s1, and no sender that

could be found for r1. Hence, in the globally stable state, the local load imbalance (i.e. the

difference between the available node capacities between s1 and r1) is at most 2L. Therefore, the

global load imbalance of the system (i.e. the maximum difference between the available capacities)

is bounded by 2LD where D is the diameter of the system (i.e. the maximum of the minimum hop

distance between any two nodes).

2) Heterogeneous services

21

The DIHeteroService algorithm deals with heterogeneous services; its segment that replaces the

line 5 to 8 of the DI algorithm is shown in Figure 10. This segment mainly selects the services from

the sender s. This selection prevents a sender (or a receiver) from becoming a receiver (or a sender)

after the load transfer (see lines 7 to 19). In the case that a sender has no services for a receiver (line

14), another sender is selected for the same receiver, and the decision procedure continues (lines 18

through 21).

5 W =
{ }

;

6 P =
{ }sservice ∈

;

7 Do forever

8
{ }

ii ArsA avcavcavcavctr −−= ,min

9
0=selectl

10 if 0>l

11
{ }trll service

Pservice
select ≤=

∈
max

12 if
0>selectl

13 add v to W if selectv ll =

14 selectss lavcavc +=

15 selectrr lavcavc −=

16 remove v from P

17 else break

18 else break

19 End of Do

14 if W is not empty

15 send instruction to s and r for the load transfer containing the services in W

16 from s from SVect and r from RVect

17 else

18 remove s from SVect

19 if SVect is not empty

20 go to line 4

21 else break

22 End of Do

Figure 10: The segment of DIHeteroService algorithm which replaces the lines 5 to 8 of the DI

algorithm shown in Figure 1.

Using the arguments we used for the DIHomoService algorithm, we can show that the load

balancing with the DIHeteroService algorithm will stop in a system with a static workload. Like the

DIHomoService algorithm, the DIHeteroService algorithm reduces the differences between the

22

available capacities of the nodes in each operation. Also, when the distribution of the loads in the

system is unknown, in a globally stable state, the local imbalance is bounded by max2l
where maxl

is

the maximum resource requirement of the services, and the global load imbalance is bounded by

Dlmax2
.

B. Analysis of the algorithms

Using simulation experiments, we investigated the two above decision algorithms in terms of

their convergence speeds, numbers of load transfers, and the remaning standard deviations of

available capacities. We assume that each load transfer requires the same amount of resources, such

as CPU or bandwith, even though they may include multiple services. Therefore, a larger number of

load transfers indicates a higher cost of load balancing. The impact of the resource requirements of

services (i.e. the sizes of services) is also investigated. The simulated system has a configuration

similar to the previous experiments. In the following experiments, the system installs large-sized

services or small-sized services. These services are randomly distributed over the nodes at the

beginning of an experiment, and the average available capacity is 5 requests/second. For example,

for a system with large-sized homogeneous services, L is set to 2.5 requests/second for a service,

which is of the same order as the node capacity. Therefore, a node can host at most 4 services. For a

system with small-sized homogeneous services, L is set to 0.25 requests/second, which is one tenth

of that of a large service. A node can host at most 40 such services. For the systems hosting

heterogeneous services, services have their resource requirements uniformly distributed between 0

and a preconfigured maximum, e.g., 2.5 requests/second for a system with large-sized services, and

0.25 requests/second for a system with small-sized services.

The decision algorithms converge faster in the systems with smaller services, and the standard

deviation of available capacities are smaller in these systems. Table 1 shows the mean value and the

90% confidence interval (CI) for values collected from 20 runs of experiements. In all of the

experiments, the diffusive load balancing stops after a small number of rounds (e.g. at most 4

rounds). The r1 of the decision algorithms are smaller than their r2. Furthermore, r1 for a system

hosting small services is smaller than for a system hosting large services. This indicates that small

services facilitate load balancing. Since the load balancing operations could select the small services

in the heterogeneous systems for further resolving load unbalances, the available capacities of the

nodes in these systems can have a smaller standard deviation in subsequent rounds. However,

moving services for load balancing in these heterogeneous systems introduces more load transfers.

The number of load transfers in a heterogeneous system is about three times larger than in a

homogeneous system hosting only the maximum-sized services. From Table 1, we also see that the

global load imbalance of a system in the stable state is much smaller than the bound calculated in

Section 4.1. The predicated global load imbalance is bounded by LD2 , but the experiments show a

value of around L or 2L.

23

Table 1: Results for the DIHomoService and DIHeteroService decision algorithms with a skip-list

overlay neighborhood

Small services Large services

homo hetero homo hetero

Mean 1825.9 5414.6 617.65 1608.05 Number of load

transfers 90% CI 25.44 64.46 5.86 17.17

Mean 0.034 0.013 0.141 0.124
r1

90% CI 0.002 0.001 0.009 0.002

Mean 0.88 0.324 0.99 0.99
r2

90% CI 0.039 0.016 0.005 0.001

Mean 0.09 0.012 0.49 0.355 Standard deviation of

available capacities 90% CI 0.01 0.001 0.032 0.006

Mean 0.36 0.139 4.5 2.64 Maximum difference

of available capacity 90% CI 0.047 0.014 0.377 0.116

Table 2: The effectiveness of the scheme in systems with churn

 small services large services

 homo Hetero homo hetero

Rate for churn: 0.1

Bound* 0.75 0.805 0.83 0.79

Number of load transferred 841 2048 122 708

Rate for churn: 0.9

Bound* 1.68 2.29 1.82 1.68

Number of load transferred 2609 3326 817 2229

*: the bound of the standard deviation of available capacities

We observed that, in a system using the diffusive scheme, the sizes of services have little impact

on the standard deviation of the available capacities when churn is noticeable. In the following

experiments, the churn rate is 0.1 or 0.9. The four systems described above are used. Table 2 shows

the bounds of the standard deviation of available capacities and the average numbers of load

transfers in each round for the four simulated systems. When the churn rate is 0.1, the four systems

have their bounds close to 0.8 in their steady states; these bounds are not significantly different (see

Table 2). A system has its bound increased when the churn rate increases. When the rate is 0.9, the

heterogeneous system hosting small services has a bound of around 2.2, and the other systems have

a bound of around 1.6 (see Table 2). These bounds are close to those in systems with fine-grained

services (see Section 3.6). This indicates that, in a system with churn, the size of services has little

impact on the bound of the standard deviation of available capacities. However, the numbers of load

transfers are largely different (see Table 2). The systems hosting large services are favored; the load

balancing operations introduce fewer load transfers.

24

V. DISCUSSION AND CONCLUSION

A. Comparison of load balancing algorithms

The proposed diffusive load balancing technique is different from other techniques proposed for

P2P systems. First, the proposed technique equalizes the available capacities of nodes so that the

mean response times of services could be similar. Other techniques equalize other kinds of

performance aspect. Some of them (e.g. [2, 3, 12]) equalize the amount of data or the numbers of

virtual servers on nodes, and some others (e.g. [8, 10]) equalize the utilizations of nodes. With those

techniques, a system that has nodes with heterogeneous capacities may have largely varying mean

response times for its services. Second, we analyzed the effectiveness of the proposed scheme in

terms of convergence speed and the remaining standard deviation of available capacities in the case

of churn. These kinds of analysis display the statistical properties of load balancing more clearly

than an analysis based on load imbalance (i.e. the difference between the maximum and the

minimum loads of nodes) as in [3, 11, 12], or the proportion of requests failed or succeeded as in [5,

7, 8].

Third, the proposed technique uses a diffusive scheme. In order to differentiate the diffusive

scheme from the other schemes, we compare in the following the proposed diffusive scheme with

three other typical schemes for P2P systems: the distributed directory, k-ary tree, and random

probing (see Table 3). These schemes are different in the way they decide load transfers. In the

distributed directory scheme, the number of directories is pre-configured. The effectiveness of the

scheme depends on the number of directories and the interval between the two consecutive load

balancing operations of a directory. For example, for a large-size system, the scheme with a small

number of directories is similar to a scheme with a central directory. For a system of small size, the

scheme with a large number of directories is similar to a distributed scheme using random probing.

Different from the distributed directory scheme, the random probing scheme and the diffusive

scheme let every node in the system make these decisions. Therefore, the two schemes are more

scalable compared with the distributed directory scheme with a fixed number of directories. The k-

ary tree scheme uses the inner tree-nodes to make decisions for load transfers. Therefore, the

number of decision components is a fraction of the number of nodes in the system, and the scheme

is scalable.

In terms of the Information policy, among the four schemes, only the k-ary tree scheme uses a

tree structure to aggregate the global load status information and to disseminate this information to

each node. As we reviewed in Section 2.1, the global information of a system easily becomes stale

if the system has a dynamic workload. Moreover, churn in a P2P system induces fluctuations of the

tree-structure in addition to variations of workload. This further degrades the accuracy of the global

load status information. Furthermore, Shen et al. [7] showed that the k-ary tree needs more

messages to implement its Information policy. The other three schemes all use the load status

information collected from a subset of nodes. Also, without using the global information, they are

more effective in dealing with the dynamics of the P2P system.

Among these schemes, only the random probing scheme uses a sender-initiated Transfer policy

for a load transfer. The other schemes use a directory-initiated policy where a decision component

25

selects a sender and a receiver for a load transfer. Our previous experiments showed that the

directory-initiated policy is superior to the sender-initiated policy.

Table 3: Comparison of load balancing schemes for P2P systems

Structure Decision

component

Information policy Transfer policy Location policy

Distributed

Directory (d-

directory) [8]

Directories a directory

collects load

statuses of

registered nodes

directory-

initiated

Nodes registered in

each directory

k-ary tree [10] inner nodes

of the tree

tree-root

aggregates load

statuses of nodes

through the tree

structure, and the

average load

status of the

system is

disseminated to

leaves

directory-

initiated

Nodes in the sub-trees

of a decision

component

Random probing

[12]

each node a node collects the

load statuses of a

set of randomly

selected nodes

sender-initiated Nodes that were

probed

Diffusive scheme each node a node collects the

load statuses of

nodes in its

neighborhood

directory-

initiated

Nodes in the

neighborhood

Among these schemes, the distributed directory and k-ary schemes spend fewer messages on

load balancing operations, but they spend extra messages on constructing the load balancing

structure. For example, in a system using the distributed directory scheme, the load balancing

operations use 2N messages in one round in the case that the system has N nodes, including those

for load status reports and load transfers. However, these nodes also use)log(NNO messages to

register in the directories, and they change their registrations from time to time for achieving global

load-balance. In a system using the k-ary scheme, an information operation uses 2(N-1) messages,

including the messages for load status aggregation and dissemination. It uses NN klog messages in

total to resolve load unbalance in the worst case, when half of the nodes are overloaded and all

located in the same sub-tree of the root, and the load balancing requests are individually sent to

26

different nodes. However, the procedure that constructs a tree based on a DHT uses)log(NNO

messages. This procedure calls a lookup procedure to map a tree node to a real node in the DHT.

Moreover, the message cost on maintaining the tree in a system depends on the churn in the system.

The larger the churn rate, the larger the message cost.

The message cost of the other two schemes (i.e. the diffusive scheme and the random probing

scheme) is not impacted by the churn of the system since they do not construct control structures. In

a system using diffusive load balancing, the load balancing operations use)log(NNO messages in

one round, including those for collecting load statuses of neighbors and for load transfers. The

message cost of the random probing scheme depends on the accuracy requirement for the estimation

of the load status in the system. The scheme in [12] uses)(log NO messages (or steps) for each

probe, and)(log NO probes for an operation. Then, in a round, the message cost is)log(2 NNO in

total. We conclude that the diffusive scheme requires fewer messages than the random probing

scheme in a round.

To further distinguish the random probing scheme proposed in the literature and the diffusive

scheme, we implemented a simulation of the random probing scheme and investigated its

convergence speed. Similar to the experiment in Section 3.4, the operating node of an operation

randomly picks  N2log nodes in the system as the neighborhood for load balancing. The random

probing scheme uses a sender-initiated policy. In the case that the running node turns out to be a

sender (its available capacity is larger than the average available capacity of the nodes in the

neighborhood), the running node locates the node with the smallest available capacity as a receiver.

We compared two decision algorithms that are popular in random probing schemes. One algorithm

lets the sender equalize its available capacity with one receiver, in the following called equalization

algorithm. Another algorithm lets the sender and the receiver have their available capacities equal to

the neighorhood average, in the following called neighborhood average algorithm. The other

parameters of the simulated system are configured as for the experiments in Section 3.

Figure 11 shows that the two decision algorithms are different in their convergence ratios. The

equalization algorithm converges faster than the neighborhood average algorithm. However, the

equalization algorithm induces 15% more load transfer than the neighborhood average algorithm

(the equalization algorithm moves 45% and the other moves 30% of the total workload). Compared

with the data shown in Figure 4(b), the convergence speed of the equalization algorithm is close to

that of the SI algorithm using random neighborhood, which is slower than the DI algorithm. The

experiment further indicates that random probing schemes with a sender-initated policy converge

much slower than the diffusive scheme with a directory-initiated policy.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

c
o
n
v
e
rg

e
n
c
e
 r

a
ti
o

round of load balancing

neighborhood average
equalization

Figure 11: The convergence ratios of the random probing scheme

5.2 Searching for services that are moved

Load balancing normally implies the movement of services from an overloaded node to an

under-loaded node. Such transfer will in general make the searching for these services more

difficult. P2P systems normally establish their overlay networks in such a way that it provides

efficient searching, possibly through a distributed hash table (DHT). In the following we mention

two design alternatives to implement service transfers without interference with the searching

algorithm.

One alternative is to foresee for each service (or object) two nodes: (1) the owner node (which is

the destination of the searching algorithm for this service), and (2) the host node which stores and

executes the service. The service is accessed indirectly; first the owner node is reached. This node

forwards the request to the host node. When the service is moved, the address of the host node in

the owner node is updated.

Another alternative is the use of virtual servers. Each node contains a certain number of virtual

servers, and the virtual servers are the units to be transferred between the nodes. The virtual servers

maintain an overlay network among themselves which can be used for searching. When a virtual

server is moved, all its neighbor virtual servers will have to update their routing table with the

address of the node where the moved virtual server will be located. Therefore the searching is not

affected by the load movement. The load balancing algorithm running on a physical node may use

the routing tables of its virtual servers to select the neighbors to be used for load balancing. In a

sense, this leads to random neighborhoods for load balancing without using random walks; the

overhead of random walks is avoided.

B. Conclusion

We proposed a diffusive load balancing scheme for P2P systems in this paper. This scheme

focuses on equalizing the available capacities of the nodes in the system so that the services on

these nodes could have similar mean response times. Nodes in a P2P system asynchronously run the

load balancing operations. Since these operations use the structure of an overlay network to identify

their neighborhoods, they do not introduce extra overheads for maintaining these neighborhoods

that are required for collecting the load information.

The effectiveness of decision algorithms for the diffusive scheme is discussed in detail. The

Complete Balancing (CB) algorithm exactly equalizes the loads on the nodes in a neighborhood,

and therefore converges fastest. Also, its convergence speed does not depend on what kind of

neighborhood is used: the skip-list neighborhood or the random neighborhood. The Directory-

28

initiated (DI) algorithm is superior to the Sender-initiated (SI) or Receiver-initiated (RI) algorithm

since its convergence speed is close to the CB algorithm. The convergence speed of the SI (or RI)

algorithm improves when it uses the neighborhoods constructed by random-walks. Especially, in

situations with a small number of hot spots (for example, 0.001 or 0.01 of nodes are hot spots) these

algorithms perform better than DI. This advantage disappears when the proportion of hot spots

becomes larger (e.g. 0.1). The diffusive scheme is very scalable; its convergence speed increases

when the size of a system increases. The message complexity of the load balancing operation

performed by a node is close to)(log NO in a system with N nodes.

When churn occurs, the diffusive scheme is able to keep the standard deviation of available

capacities within a bound. The bound is larger when the system has a larger churn rate. The DI

algorithm brings the available capacity into a smaller bound than the SI (or RI) algorithm. We note

that in a system with homogeneous nodes, the bound of the available capacities is a linear function

of the average workload in the system.

We also designed load balancing decision algorithms for systems with large-size services;

however, the sizes of services have little impact on the effectiveness of load balancing. The scheme

converges faster for smaller-sized services since its operations invoke more services to be

transferred, and the reduction of the differences between the available capacities is larger. However,

when churn occurs, the bound of the standard deviation of the available capacities is not affected by

the sizes of services. For a specific churn rate, the systems with different large-size services have

similar bounds. The impact of the churn rate on the bound is much larger than the impact of the

sizes of services.

The proposed diffusive load balancing scheme could be augmented with other mechanisms to

guarantee the quality of services. One quality of service requirement is the mean response times of

services. When a system uses the proposed diffusive load balancing, the services that the system

provides have similar mean response times. From the perspective of performance, services may

have different requirements on their mean response times. When a mechanism that controls the

mean response times for individual services is combined with the proposed load balancing scheme,

the services in a system could have different mean response times while the nodes have the same

available capacity.

References:

[1] Cedo F., Cortes A., Ripoll A., Senar M. A., and Luque E. (2007) The Convergence of Realistic Distributed Load-
Balancing Algorithms. Theory of Computing Systems, 41, 4, December 2007, 609-618.

[2] Stoica I., Morris R., Karger D., Kaashoek M. F., and Balakrishnan H. (2001) Chord: A scalable peer-to-peer lookup
service for internet applications. SIGCOMM Computer Communication Review, 31, 4, Oct., 2001, 149-160

[3] Ganesan P., Bawa M., and Garcia-Molina H. (2004) Online balancing of range-partitioned data with applications to
peer-to-peer systems. In Proceedings of the Thirtieth international Conference on Very Large Data Bases - Volume
30, Toronto, Canada, August 31 - September 03, 2004.

[4] Corradi A., Leonardi L., and Zambonelli F. (1999) Diffusive Load-Balancing Policies for Dynamic Applications.
IEEE Concurrency 7, 1, Jan., 1999, 22-31

[5] Ledlie J., Seltzer M. (2005) Distributed, secure load balancing with skew, heterogeneity and churn. In Proceedings of
24th INFOCOM 2005. pp. 1419-1430, March 2005.

[6] Willebeek-LeMair M. H. and Reeves A. P. (1993) Strategies for Dynamic Load Balancing on Highly Parallel
Computers. IEEE Transactions on Parallel Distributed Systems 4, 9, September, 1993, 979-993.

[7] Shen H. and Xu C. (2007) Locality-Aware and Churn-Resilient Load-Balancing Algorithms in Structured Peer-to-
Peer Networks. IEEE Transactions on Parallel Distributed Systems. 18, 6, June, 2007, 849-862.

[8] Surana S., Godfrey B., Lakshminarayanan K., Karp R., and Stoica I. (2006). Load balancing in dynamic structured
peer-to-peer systems. Performance Evaluation, 63, 3, March, 2006, 217-240.

29

[9] Mohamed-Salem M.-V., v. Bochmann G., and Wong J. W. (2003) Wide-area server selection using a multi-broker
architecture, in Proceedings of International Workshop on New Advances of Web Server and Proxy Technologies.
Providence, USA, May 19, 2003.

[10] Zhu Y. and Hu Y. (2005) Efficient, Proximity-Aware Load Balancing for DHT-Based P2P Systems. IEEE
Transactions on Parallel Distributed Systems. 16, 4, Apr. 2005, 349-361.

[11] Vu Q. H., Ooi B. C., Rinard M., and Tan K. (2009) Histogram-Based Global Load Balancing in Structured Peer-to-
Peer Systems. IEEE Transactions on Knowledge and Data Engineering, 21, 4, Apr., 2009, 595-608.

[12] Bharambe A. R., Agrawal M., and Seshan S. (2004) Mercury: supporting scalable multi-attribute range queries. In
Proceedings of the SIGCOMM '04. ACM, New York, NY, 353-366.

[13] Karger D. R. and Ruhl M. (2004) Simple efficient load balancing algorithms for peer-to-peer systems. In Proceedings
of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures (Barcelona, Spain, June 27
- 30, 2004). SPAA '04. ACM, New York, NY, 36-43.

[14] Zhong M., Shen K., and Seiferas J. (2008) The Convergence-Guaranteed Random Walk and Its Applications in Peer-
to-Peer Networks. IEEE Transactions on Computers, 57, 5, May., 2008, 619-633.

[15] Qiao Y. and von Bochmann G. (2009) A Diffusive Load Balancing Scheme for Clustered Peer-to-Peer Systems. In
Proceedings of the 2009 15th ICPADS. IEEE Computer Society, Washington, DC, 842-847.

[16] Li M., Lee W., and Sivasubramaniam A. (2006) DPTree: A Balanced Tree Based Indexing Framework for Peer-to-
Peer Systems. In Proceedings of ICNP 2006. IEEE Computer Society, Washington, DC, 12-21.

[17] Boillat J. E. (1990) Load balancing and Poisson equation in a graph. Concurrency and Computation: Practice and
Experence, 2, 4, (Nov., 1990),,289-313.

[18] Cybenko G. (1989) Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and
Distributed Computing, 7, 2 (Oct. 1989), 279-301.

[19] Jain R. (1991) The Art of Computer Systems Performance Analysis, 1991, John Wiley & Sons, New York .

[20] Bertsekas D.P. and Tsitsiklis J.N., (1999) Parallel and distributed computation: Numerical Methods, Englewood
Cliffs, NJ, 1999

[21] Song, J. (1994) A partially asynchronous and iterative algorithm for distributed load balancing. Parallel Computing,
20, 6 (Jun. 1994), 853-868.

[22] Zhao S., Stutzbach D., Rejaie R. (2006) Characterizing Files in the Modern Gnutella Network: A Measurement
Study. In Proceedings of SPIE/ACM Multimedia Computing and Networking, 2006.

[23] Xu C. and Lau, F. C. (1997) Load Balancing in Parallel Computers: Theory and Practice. Kluwer Academic
Publishers.

[24] Hui C. C. (1996) A Hydro-Dynamic Approach to Heterogeneous Dynamic Load Balancing in a Network of
Computers. In Proceedings of ICPP 1996, IEEE Computer Society, Washington, DC, 140.

[25] Cortés A., Ripoll A., Cedó F., Senar M. A., and Luque E. (2002) An asynchronous and iterative load balancing
algorithm for discrete load model. Journal of Parallel and Distributed Computing, 62, 12, pp. 1729-1746.

[26] Jagadish H. V., Ooi B. Ch., and Vu Q. H. (2005) BATON: a balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st international conference on Very large data bases (VLDB '05). Endowment 661-672.

[27] Qiao Y., (2012) Using a Diffusive Approach for Load Balancing in Peer-to-Peer Systems. Chapter 4, Section 4.2.1.2,
University of Ottawa, Dissertation, 2012, 65-74

[28] Locher T., Schmid S., Wattenhofer R. (2006) eQuus: A Provably Robust and Locality-Aware Peer-to-Peer System. In
Proceeding of Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06), 2006, pp. 3-11.

[29] SSim library for discrete event simulation: http://www.inf.usi.ch/carzaniga/ssim/index.html

