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Abstract: We developed a diffusive load balancing technique for P2P systems. This technique uses 

the overlay network of a P2P system and results in the nodes of the network having similar 

available capacities; therefore the services hosted on these nodes are expected to have similar 

mean response times. In this paper, the technique is presented, including the policies, stages of 

operation, and decision algorithms. The convergence of the available capacities to the global 

average is demonstrated. The convergence speed depends on the decision algorithm, the 

neighborhood structure of the underlying overlay network, and the workload distribution. When 

used in a system with churn, the technique keeps the standard deviation of available capacities in 

the system within a bound. This bound depends on the amount of churn and the frequency of the 

load balancing operations, as well as on the distribution of node capacities. However, the sizes of 

services have little impact on this bound.  The paper presents the results of analytical analysis and 

simulation studies.   
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I. INTRODUCTION 

The performance issues of peer-to-peer (P2P) systems come from the characteristics of these 

systems. The nodes in these systems may be heterogeneous in terms of their resource capacities, 

geographic locations, or on-line periods (i.e. time of participation in the system). The services for 

accessing the shared objects on the P2P nodes also have different resource requirements, and the 

number of user requests, and the locations of users may change. In these systems, some user 

requests may be delayed or even lost by some nodes, while other nodes are idle. Also, the mean 

response times of the requests that access the same object on the same node could vary over time 

because of changing request rates.  

Load balancing techniques are proposed to solve these issues. These techniques dynamically 

reallocate nodes or shared objects in the P2P system so that they could provide a more uniform 

quality of service for their services. Using distributed approaches, these techniques are scalable to 

large sizes of P2P systems. However, these techniques either rely on some specific structures of the 

overlay networks or construct their own structures therefore inducing extra messages. For example, 

some techniques, such as the one in the BATON system [26] or in the DPTree system [16], use the 

tree structure of an overlay network for their operations. These techniques can not be deployed in an 

overlay network using another kind of structure. Some techniques require the system to construct a 

structure based on their P2P overlay networks (e.g. [10, 11]) only for load balancing. Or, some 

techniques use random walks (e.g. [7, 14]) in their load balancing operations. These random walks 

add extra messages to the P2P system. 

We developed a diffusive load balancing technique for P2P systems. It uses a diffusive load 

balancing scheme, originally proposed for parallel computing systems that have a massive number 

of processors. In order to deal with the characteristics of P2P systems, this diffusive scheme 

specifies that the P2P nodes run the load balancing operations asynchronously. During each 

operation, a node collects the load statuses (i.e. the available capacities) of its neighbors in the 

overlay network, and decides load transfers (i.e. object movements) between these neighbors so that 

the neighbors could have similar mean response times for their services. A global balanced state, 

where all nodes have the same mean response time, can be achieved by this kind of local load 

balancing. Compared with other techniques proposed for P2P systems, the diffusive technique 

neither sets up extra connections between nodes nor spends a large number of messages on random 

walkers in the system.  

The following sections are organized for presenting different aspects of the proposed scheme. 

Section 2 reviews peer-to-peer load-balancing techniques and diffusive load-balancing schemes 

studied for parallel computing systems. Section 3 presents the design of the proposed diffusive 

scheme for systems with fine-grained services, including its policies, the stages of operation, and 

the decision algorithms. This section examines the convergence of the scheme and compares the 

effectiveness of the decision algorithms in systems with a skip-list overlay structure. It further 

discusses the impact of the characteristics of P2P systems on the effectiveness of load balancing, 

including the structure of the overlay network, workload distribution, churn (node joining or 

leaving), and nodes with heterogeneous capacities. Section 4 presents the decision algorithms for 

the diffusive scheme to deal with large-sized services. The section further studies the impact of the 
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service size on the effectiveness of load balancing. Section 5 compares the diffusive scheme with 

other schemes for P2P systems proposed in the literature, discusses the practical realization of load 

transfers in a real P2P system, and concludes the paper.  

II. BACKGROUND 

A. Load balancing techniques for P2P systems 

The load balancing techniques proposed for P2P systems either allocate or relocate service 

objects onto nodes in these systems, or relocate nodes such that the users accessing these objects see 

a uniform response time. These techniques have policies to specify when and where to perform load 

balancing operations, and how to decide object locations/relocations during these operations. Since 

P2P systems have large sizes, these techniques also specify various structures and algorithms to 

detect the load status of the system and to decide load transfers between nodes.  

These load balancing techniques differ in the structures by which they organize the nodes. This 

results in differences of the effectiveness of load balancing. A linked-list structure is the simplest 

structure used by techniques such as [3, 11, 12]. After a node conducted a load balancing operation 

(which moves objects between nodes), all the nodes in its neighborhood (e.g. including itself and its 

direct neighbors in the ring) have the same load. Vu et al. [11] shows that a simple load balancing 

scheme like this is not effective in balancing the load variations in systems with churn. Normally, 

another kind of scheme is used to further reduce the load variations. 

Other structures, such as tree, distributed directory, or neighborhoods with randomly probed 

nodes, are also used for load balancing. For example, in the tree structure of BATON [26], a parent 

node works as a decision component (or directory) for balancing the loads for its sub-trees. The 

system is load balanced when the sub-trees of the root have equal loads. However, this load 

balancing can not be applied to systems with other kinds of structure. The distributed directories 

proposed in [8] is another structure used for load balancing. A node registers to a directory at 

random and stays there for some time, while the directory balances the loads of its registered nodes. 

However, the directory (central or distributed) scheme can not deal well with the dynamics of a P2P 

system and the running period of the directory must be engineered [7]. Some schemes, such as those 

in  [5, 7, 13, 14], construct neighborhoods by using random walks. A node probes some other 

random nodes for sharing their excess loads.   

Some schemes use structures to aggregate the global load information for load balancing. These 

schemes are criticized because of the cost of collecting the global information and the limited 

freshness of this information. For example, the k-ary tree scheme [10] constructs a tree structure 

based on Chord for aggregating the global load information from the leaf-nodes to the root node, 

and for disseminating this information from the root to the leaves. The global information is used by 

the leaves to identify their state (either overloaded or under-loaded). Shen et al. [7] showed that the 

system using the scheme does not deal well with load variations due to churn (i.e. the loads of nodes 

have a large variance). Shen also revealed that, compared to other schemes, the k-ary tree scheme 

induces a larger number of messages. To avoid the cost of constructing a tree, the scheme for the 

DPTree system [16] generates a global map that is circulated among nodes. The map is updated 

during the circulation. However, the map itself reflects a tree structure; this prevents the scheme 
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from being used in systems with another kind of structure. The Histogram scheme [11] constructs a 

structure for aggregating the global load information in a structured P2P system. Although the 

scheme keeps a smaller load imbalance for a P2P system than a scheme using a sender-initiated 

policy, the aggregation introduces message overhead. Random walks are sometimes used in 

estimating global load information for load balancing, such as in Mercury [12]. However, in order 

to precisely estimate the global load distribution, the scheme has to use )(log NO  random walks for a 

system that has N nodes. These random walks add extra overhead to the system. 

B. Diffusive load balancing schemes 

Diffusive load balancing schemes (also called diffusive schemes in this paper) are studied for 

balancing the computations of parallel computing programs over the nodes in parallel computer 

systems. These schemes are classified as synchronous or asynchronous schemes. A synchronous 

scheme specifies that all nodes, which are coordinated by a global clock, run load balancing 

operations at the same time. These operations conduct the activities such as reporting load statuses 

of nodes to neighbors, deciding load transfers, and transferring loads. Asynchronous diffusive 

schemes do not require this kind of synchrony while nodes periodically conduct individual load 

balancing operations. However, the delay for transmitting a message or transferring a load must be 

bounded. Therefore, these schemes are also called partially asynchronous schemes. 

Diffusive schemes normally use a sender-initiated policy, where a sender node (that is, an 

overloaded node) decides and invokes the load transfers to receivers (that are under-loaded nodes). 

These schemes differ in their decision algorithms which calculate the amount of load to be 

transferred. Assuming that the objects (e.g. tasks, calculations or data items) on nodes are fine 

grained, Boillat [17] derived an algorithm for a synchronous scheme from the Poisson diffusion 

equation. Cybenko derived an algorithm in a similar way [18]. Bertsekas formalized a partial 

asynchronous scheme in [20] by specifying that an overloaded node should send its load to under-

loaded nodes, especially the lightest loaded one, and, after a load transfer, the workload on the 

sender should still be larger than that of the receiver. The partially asynchronous schemes in [21] 

and [24] also specified the function for calculating the amount of workload to be transferred from 

load senders to receivers.  

A diffusive load balancing scheme converges if the workload of all nodes (asymptotically) 

reaches the global average as time proceeds. It has been shown that the convergence speed of a 

synchronous diffusive scheme could be optimal by choosing the portion of workload for load 

exchanges between two neighbors according to the topology of a system [23]. If the load for an 

exchange is equal to a proportion of the difference between the loads of two neighbors [24], a 

scheme converges faster in a system with a hypercube or torus topology, where, compared with a 

ring or a linear network, the network has a symmetric graph and a smaller diameter.  

Because of these properties, we propose an asynchronous diffusive scheme for load balancing in 

P2P systems. 

III. DESIGN OF THE DIFFUSIVE LOAD BALANCING SCHEME 

The proposed diffusive scheme is different from the other load balancing schemes for P2P 

systems in terms of the load index (i.e. the measure used for indicating the load statuses of nodes), 
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the policies for applying load balancing operations, and the stages of these operations. In this 

section, we describe the scheme in terms of these aspects and analyze its convergence speed. We 

also analyze the impact of the neighborhood structures, workload distributions, churn, and the 

heterogeneity of the node capacities on the effectiveness of load balancing.  

A. Load index 

P2P nodes are expected to provide services with a uniform mean response time, like the servers 

in a client/server system [9]. But, the load balancing techniques proposed for P2P systems in the 

literature can not achieve this purpose. For example, some load balancing schemes that equalize the 

amount of data or number of virtual servers on the nodes [2, 3] do not deal with nodes with 

heterogeneous capacities. Some other schemes bring the utilizations of nodes to the average of the 

system [8, 10]. It can be shown that, when two server nodes with different capacities have the same 

utilization, their mean response times might not be the same. That is, the requests arriving at the 

node with the higher capacity would experience a smaller mean response time. Therefore, these 

schemes do not equalize the response times of services on different nodes. 

The proposed scheme considers the available capacities of the nodes as load index that must be 

equalized. The performance of a server in a client/server system is normally modeled as an M/M/1 

queuing system. According to [19], we have  

[ ]
λµ

µ

λ −
=

−

=Ε
1

1

1

ur

 

(Equation 3.1) 

which indicates that the mean response time for requests ][rΕ  is the inverse of the difference 

between the service rate µ and the arrival rateλ of requests on the server. We take the number of 

user request that can be processed per time unit as the measure of the (total) capacity of a node, 

normally written µ . Using the same units, the used capacity, normally written λ , is the number of 

user requests arriving per time unit. Then the available capacity is the difference between µ and λ . 

Equation 3.1 shows that, in the case that two server nodes have the same available capacity, the 

mean response times of their requests are the same. The equation also applies to the case where the 

two servers have different capacities. We conclude that, in the case that the nodes in a P2P system 

have the same available capacity, the mean response times of the requests of the system are the 

same. Therefore, the purpose of the diffusive load balancing is to obtain similar available capacities 

for all nodes so that the services provided by the system could have a more uniformed mean 

response times or quality of service for their services. 

In order to show that equalizing the available capacity leads to similar response times also in 

situations where the response time of each node is not accurately modeled by an M/M/1 queue, we 

compared in [27] two load balancing techniques for systems with nodes modeled as GI/G/1 queues: 

one equalizes the available capacities of nodes, the other their utilizations. This study showed that 

the first technique leads to more similar response times than the second. Using the first technique, 

the system has a smaller expected value and a smaller variance for the mean response times of 

nodes. Also, the variance of the mean response times is bounded by a fixed value. In a system using 

the second technique, this variance is bounded by ρ−1

1

where ρ is the equalized utilization. 
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The diffusive schemes for parallel computing systems have different load indexes for equalizing 

the amounts of computation on the nodes. Clearly, those load measures do not reflect the dynamic 

arrival and departure of requests on the nodes. Therefore, they are not appropriate for load 

balancing in P2P systems. 

B. Load balancing operations and their decision algorithms 

The proposed scheme specifies load balancing policies for its operations that periodically run on 

nodes of the P2P system. The information policy specifies that a node periodically runs an operation 

to collect load information from its neighbors. The transfer and location policies specify the 

selection of the senders and receivers for load transfers within a neighborhood. A load balancing 

operation realizes these policies. We call the node that is executing a load balancing operation the 

operating node, and its neighborhood includes the operating node itself and its direct neighbors 

within the overlay network.  

An operation goes through the following three stages:  

Load determination: In this stage, the operating node collects the available capacities of its 

neighbors by sending probing messages. A probed neighbor responds with its available capacity if it 

is not involved in another balancing operation. The operating node waits for these responses. 

Decision: First, the operating node calculates the average available capacity for the 

neighborhood. A node is identified as a candidate load-receiver (load-sender) of load if its available 

capacity is larger (smaller) than the average. Then, a decision procedure identifies one or several 

receiver-sender pairs and sends a load transfer request to the sender of each pair, including the ID of 

the selected receiver (which is the target of the load transfer) and the amount of load to be 

transferred (called required capacity). The detail of the decision procedure depends on the decision 

algorithm. We will discuss different decision algorithms in the following sections. 

Load transfer: During this stage, loads are transferred between the determined senders and 

receivers.  

After having performed an operation, the operating node will go back to process the normal 

service requests until the time has come for another load balancing operation. Operations on 

different nodes are not synchronized. These operations may run concurrently on different nodes, 

however, a node involved in one such operation will refuse the participation in another load 

balancing operation initiated by one of its neighbors. In this way, the load status information 

collected from a neighbor during an operation is always correct.  

We consider the following algorithms that could be used in the decision stage of a load 

balancing operation: the Proportional, Complete Balancing (CB), Directory-Initiated (DI), Sender-

initiated (SI) and Receiver-initiated (RI) algorithms. We assume that objects have sizes of fine 

granularity, which means that workloads of arbitrary sizes can be transferred; we also assume that 

they can be moved to any neighbor in the system. We will discuss the interaction of these load 

transfers with the search algorithm in the P2P system in the last section.  

We introduce the following notations. The operating node of a load balancing operation is called 

node i. The neighborhood of the operating node is denoted as iA , and the number of nodes in the 

neighborhood is iA . A node in iA  is identified as a node j. A node x has a node capacity equal to Cx. 
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If a node has services with a total resource requirements of lx, its available capacity is xxx lCavc −= . 

We write avcx and xcav ′
 to represent the load status of node x at the beginning and at the end of an 

operation, respectively. For example, when services with resource requirements l have been 

transferred from node x to y at the end of an operation, we have lavccav
xx

+=′
 and 

lavccav yy −=′
.  

1) Proportional algorithm 

The Proportional algorithm (Prop.) has been discussed in [23], and we assume that the algorithm 

uses the available capacities of nodes as load index. Here, the decision algorithm determines the 

following load exchanges between node i and all other nodes j in its neighborhood: load equal to 

k(avci-avcj) will be transferred from node j to node i (if the value is negative, the exchange 

proceeds in the opposite direction), where k is a constant between zero and one. At the end of the 

operation, when all exchanges have been performed, the new available capacities are as follows: 

∑+−=′
j

jii avckavcdkcav )1(

 for i where 
1−= iAd

, and ijj kavcavckcav +−=′ )1(
 for any neighbor j 

other than i.  

2) Complete Balancing algorithm 

The Complete Balancing (CB) algorithm (also described in [23]) equalizes the available 

capacities of all nodes in the neighborhood of node i during an operation. The average available 

capacity of the nodes in the neighborhood of node i (including node i) is   

i

Aj

j

A
A

avc

avc i

i

∑
∈

=

 

(Equation 3.2) 

The CB algorithm determines load exchanges such that at the end of the operation all nodes in 

the neighborhood have the same average available capacity. 

3) Directory-Initiated algorithm 

The Directory-Initiated (DI) algorithm is similar to the algorithm proposed in [4] for parallel 

computer programs. This algorithm also calculates the average available capacity of the 

neighborhood by using Equation 3.2. Based on the value of the average, the algorithm identifies 

nodes as overloaded (if its available capacity is smaller than the average), under-loaded (if its 

available capacity is larger than the average), or equalized. The overloaded nodes are kept in a 

vector SVect, and the under-loaded nodes in a vector RVect. The algorithm uses the procedure 

shown in Figure 1 to decide service migrations.  

In the case that none of the vectors is empty, the procedure selects a pair of a sender s and a 

receiver r such that the two nodes have the largest difference between their loads among all the 

nodes remaining in the two vectors (line 3 and 4). Otherwise, the procedure stops (line 2). Line 5 

decides the load that should be moved between s and r so that the sender s would not be under-

loaded and the receiver r would not be over-loaded after the load transfer. The procedure continues 

after removing s from SVect and r from RVect. 
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Decision Procedure 

1 Do forever 

2    if SVect and RVect are not empty 

3          
}{min j

SVectj
avcs

∈
=

 

4         
}{max j

SVectj
avcr

∈
=

 

5        tr =
},min{

ii ArsA avcavcavcavc −−
  

6        Send instruction to s and r with load equal to tr for the transfer; 

7        remove s from SVect and r from RVect 

8     else break; 

9 End of Do  

Figure 1: The decision procedure of the DI algorithm 

 

4) Sender-Initiated and Receiver-Initiated algorithms 

Like the DI algorithm, the Sender-Initiated (SI) and Receiver-Initiated (RI) algorithms identify 

overloaded and under-loaded nodes according to the average. However, in the SI (RI) algorithm, 

node i is identified as a sender s (a receiver r) if its available capacity is smaller (larger) than the 

average; otherwise, no load transfer will take place. Similar algorithms have been proposed for 

parallel computing systems in [6].  

The procedure for deciding the load transfer is shown in Figure 3.2. The load to be transferred 

out from node s (called requiredavc
) is the difference between the average and the available capacity of 

s (line 1). The total providable available capacity (called providable
avc

) is obtained from the available 

capacities of all under-loaded nodes. The load to be transferred into a receiver is proportional to its 

providable available capacity (line 6). The under-loaded nodes in RVect are considered one by one 

for deciding a load transfers.  

The RI algorithm has a similar procedure where the receiver takes the role of the sender in 

Figure 2, and its exceeding available capacity (i.e. providable available capacity) will be distributed 

to all the overloaded nodes. 

Decision Procedure  

sArequired avcavcavc
i
−=

 

∑
∈

−=
RVectr

Arprovidable i
avcavcavc )(

 
Do forever 

     if RVect is not empty 

         for a node r in RVect 

           tr =  providableArrequired avcavcavcavc
i

/)( −
 

           send instruction to r with load equal to tr for the transfer 

          remove r from RVect 

     else break; 

End of Do 

Figure 2: The decision procedure of the SI algorithm 

 

C. Analysis of the scheme 

In this section, we consider a P2P system with a static workload, where the workloads of the 

services performed on the nodes of the P2P system do not change over time. We will study here 

how the asynchronous, diffusive load balancing scheme leads the system to change from any initial 

state (e.g. where the loads of the nodes are uniformly distributed) to a globally balanced state 
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(where all nodes have the same available capacity). First, we discuss the convergence of the 

diffusive scheme from an analytical viewpoint, and then we present some simulation studies which 

provide a more detailed comparison of the different decision algorithms.  

1) Analytical considerations 

The function that the Proportional algorithm uses to calculate the new available capacities of 

nodes is the function of an asynchronous diffusion scheme presented in [23] where workload is 

replaced by available capacity. The proof in [23] shows that, after an operation, the variance of the 

workload of all nodes in the system is decreased by a given factor a (smaller than 1). This means 

that the variance follows a geometric series of values which converges to zero. Hence, the 

Proportional algorithm converges when it uses the available capacity as load index. We can provide 

similar proofs of convergence for the other decision algorithms as follows.  

We first discuss the CB algorithm in detail. We assume that there is a P2P system that consists 

of N nodes, and the global average of the available capacities of its nodes is N

avc

AVC
j

j∑
=

. We write 

N

avcAVC

avc
j

j∑ −

=

2

2

)(

)(σ
 for the variance and ( )avcσ  for the standard deviation of the available capacities in 

the system at the time before a node i starts its load balancing operation. Now we want to calculate 

the variance of the available capacities after this operation, written )(2 cav ′σ . We have Equation 3.3 

to calculate the variance of available capacities:  

( )

( )

( ) ( )∑∑

∑

∉∈

′−+′−=

′−=

′

ii Aj

j

Aj

j

j

j

cavAVCcavAVC

cavAVC

cavN

22

2

2σ

 

(Equation 3.3). 

At the right side of the equation, there are two terms. The first term is a sum over all the nodes j 

that are within the neighborhood Ai (including i), and it is equal to 
( )2

iAi avcAVCA −
, where iAavc  is the 

average of the available capacity of the nodes within i’s neighborhood and iA
 is the number of 

nodes in this neighborhood. Then, we write  

( )[ ] ( )[ ] ( ) 







′−Ε+−Ε=′Ε ∑

∉ i

i

Aj

jAi cavAVCavcAVCAcavN
222σ

 
(Equation 3.4). 

where the notation ][ XΕ represents the mean of the random variable X. Since the local average iAavc
 

is obtained over a set of iA
 nodes, the mean of iA

avc
is AVC , and in the first term of Equation 

3.4, [ ]2)(
iAavcAVC −Ε  is the variance of iA

avc
which is equal to 

)(
1 2 avc
Ai

σ

. We assume that iA
 is the 

same for all nodes i. Since, in Equation 3.4, )()]([ 22
cavNcavN ′=′Ε σσ for all available capacities in 

the system, and the second term at the left of the equation evaluates to )()( 2
avcAN σ− , we obtain 

( ) ( ) )(1
22

avcANcavN σσ +−=′
, or  

)(
1

1)( 22
avc

N

A
cav σσ 







 −
−=′

 
(Equation 3.5). 

Since Equation 3.5 holds for any local load balancing operation that is performed by any node in the 

system, we see that the value of the variance follows a geometric series that converges to zero. 
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Now we are interested in estimating by which factor the variance decreases over a period of one 

round. A round is the time interval within which each node of the overlay network is supposed to 

have performed exactly one load balancing operation. We denote the variance of available 

capacities at the end of round t as )(2 tavcσ  and the standard deviation as )( tavcσ . Since there will be 

N load balancing operations within this period, we obtain the following equation:  

( ) ( ) ( )12122
1

1
1

1
−−








 −
−=







 −
−= ∏ t

N

t

i

t
avc

N

A
avc

N

A
avc σσσ

 
(Equation 3.6). 

Since |A| is much smaller than N, we can use the approximation 
xn

e
n

x
=+ )1(

for large integers n, and 

obtain the following equation:  

( ) )( 12)1(2 −−−
= tAt

avceavc σσ  (Equation 3.7) 

and 

( ) )( 12

)1(

−

−−

= t

A

t
avceavc σσ  

(Equation 3.8) 

Therefore, for the period of one round, the variance of available capacities reduces by a factor of 

1−A
e , and the standard deviation reduces by a factor of 2

1−A

e  (derived from Equation 3.7). We call the 

multiplier that indicates the change of the standard deviation in Equation 3.8 the convergence ratio. 

Then, we can say that diffusive load balancing has a convergence ratio equal to 2

)1( −− A

e  (or 2

1 A

e

−

) when 

it uses the DI algorithm.  

In the following, we discuss the convergence speed for the other algorithms: the DI, SI and RI 

decision algorithms. These algorithms are more practical for real systems compared to the CB 

algorithm. Using the CB algorithm, an operating node works as a receiver for some neighbors and a 

sender for the others at the same time. This does not occur for the algorithms considered now. 

However, they are expected to provide slower convergence than the CB algorithm, because at the 

end of a load balancing operation by a node i, the available capacities of the nodes within its 

neighborhood would be less uniform than in the case of the CB algorithm. For example, in the case 

of the SI algorithm, half of the times, there is no change in the load distribution, namely when node 

i is under-loaded and we have )()( 22
avccav σσ =′ . If node i is overloaded, its available capacity will 

reach the neighborhood average and the available capacity of each under-loaded node will be 

increased by smaller amounts. If we consider the load change on the overloaded node and ignore 

the changes of the under-loaded nodes, we obtain the formula 
( ) ( ) ( )avcNavc

A
cavN

i

222
)1(

1
σσσ −+=′

. We 

combine the above two formulas into the equation 
( ) ( ) ( ) ( )









−++=′ avcNavc

A
avcNcavN

i

2222 )1(
1

2

1

2

1
σσσσ

– 

note that we have ignored here the difference between the global average and the average within the 

neighborhood. Then, we obtain 

( ) ( )avc
NA

A
cav

i

i 22

2

1
1 σσ 









 −
−=′

. If we assume ii AA ≈−1
, then, we obtain 

( ) ( )avc
N

cav
22

2

1
1 σσ 








−≈′

, and ( ) ( )122

1

2 −
−

≈ tt
avceavc σσ . Therefore we expect that the standard deviation 

of available capacities is reduced over the period of one round by a factor of 
25.0e approximately. 

This would be similar for the RI algorithm. 
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The convergence speed of the DI algorithm is more difficult to estimate, since during a single 

load balancing operation, several sender-receiver pairs exchange parts of their load. For each of the 

resulting load transfers, one of the partners will reach the neighborhood average, but it is difficult to 

estimate how many pairs will be identified and how much the load change of the other partner 

contributes to the reduction of the variance. However, since the DI algorithm drives more nodes to 

reach the average of the neighborhood during one operation than the SI or RI algorithms, it is clear 

that the convergence speed of this algorithm is expected to lie between the speeds of the CB and SI 

algorithms. 

2) Simulation studies 

Next, we study the convergence of load balancing with simulation experiments. The 

convergence of a classical synchronous diffusive scheme, such as the one in [18, 23], was evaluated 

by a convergence factor γ  , which is the smallest reduction of the variance of loads during one 

operation. Therefore, the convergence time derived from the factor (i.e. γln

1
≈t

) is the maximum time 

that the scheme uses. We use a different method to investigate the convergence of an asynchronous 

scheme. In our experiments, the convergence of the scheme is measured by the convergence ratio rt 

during round t. rt is the ratio of )(
t

avcσ  to )( 1−tavcσ  where )(
t

avcσ  is the standard deviation of 

available capacities at the end of round t. Therefore, rt is also the reduction ratio of the standard 

deviation of available capacities. Using this method, the progress of load balancing can be 

displayed.  

These experiments use a simulated P2P system which is a modified version of the clustered P2P 

system called “eQuus” [28], where each cluster has only one node. This system has a skip-list 

structured overlay network. For example, for a system with N nodes, all nodes are first connected 

into a ring according to the ascending order of their IDs. In addition, each node has fingers pointing 

to the nodes at 
k

2  positions further down on the ring (  Nk 2log,1,0 K=
). This structure is similar 

to those used by many P2P systems (e.g. Chord, Pastry, or DPTree), where the time and message 

complexities of a search can be maintained at )(log NO . In the following experiments, the simulated 

systems have 1000 nodes. All 1000 nodes have the same capacity of 10 requests per second, and 

initially, the available capacities of nodes are uniformly distributed in the range of [0, 10], with a 

mean of 5 which leads to a standard deviation of 2.88.  

We observed that, for a given decision algorithm, the convergence ratios in different rounds are 

different. During the first round, the algorithm has the smallest convergence ratio with the largest 

proportion of loads transferred, and the standard deviation of available capacities drops very 

rapidly. In the following rounds, the algorithm has slower convergence ratios with fewer loads 

transferred. We also observe that, after the experiment runs for 10 rounds, there are very few loads 

transferred, and the standard deviation of available capacities approaches zero. We say that the 

system is in the globally balanced state. Figure 3 shows the effectiveness of these decision 

algorithms during the first five rounds. The measurements in the figure are averaged over 20 

simulation runs, each. For each measurement, the mean and the 95% confidence interval of the 

mean are displayed.  

Figure 3 shows that these decision algorithms converge at different speeds. This confirms the 

predictions of our analysis above. Among these algorithms, the CB algorithm converges most 
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rapidly. It has a convergence ratio r1 close to 0.002, which indicates that the standard deviation of 

available capacities drops by 99.8% during the first round. Figure 3(a) further shows that the 

standard deviation of the normalized available capacities drops from 0.573 to 0.001 in this round. 

The normalized available capacities are the available capacities at the end of that round divided by 

the average workload of the system. In the following rounds, the convergence ratios of the CB 

algorithm remain as small as 0.01. The SI and RI algorithms converge much slower than the CB 

algorithms (e.g. the standard deviation of available capacities drops by 78% in the first round with 

r1 around 0.22). Among the practical algorithms (i.e. DI, SI and RI), the DI algorithm has the 

strongest average convergence ratio which is close to the CB algorithm (with r1 around 0.02). This 

observation indicates that resolving multiple pairs of senders and receivers, as done by the DI 

algorithm, improves the effectiveness of diffusive load balancing. The Proportional algorithm 

converges faster than the SI and RI algorithm but slower than the DI algorithm. The data in the 

figure confirms the predictions of our analysis given above.  

The amount of loads transferred between nodes is also collected for evaluating the cost of load 

balancing. For transferring loads, a system has to spend some processing power of nodes for 

packing and unpacking objects and some bandwidth of its network links for transmitting the packed 

objects. A decision algorithm has a higher cost if it decides more transferred loads. The Proportional 

algorithm requires transferring more loads than the DI, SI or RI algorithms. The DI, SI and RI 

algorithms result in about 35% of the total loads to be transferred between nodes for the standard 

deviation of available capacities to drop by 99% from the beginning.  
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           (c) 

Figure 3: The progress of the diffusive load balancing with various decision algorithms: (a) 

standard deviation of normalized available capacities, (b) convergence ratio, and (c) proportion of 

loads transferred 
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From the perspective of the convergence speed, the diffusive scheme is scalable for P2P 

systems. We note that, using the diffusive scheme with the CB algorithm, the system has a 

convergence ratio close to 2

1 A

e

−

 during one round (where 
A

is the number of nodes in a 

neighborhood). In a P2P system, the value of 
A

 grows along with the increase of the system size, 

normally logarithmically. Therefore, the larger the system size, the smaller is the factor, and the 

faster the scheme converges. For example, for a system with a skip-list overlay network, in the case 

that the system size is doubled from N to 2N, the convergence ratio of the CB algorithm would 

reduce from 
 

2

log1 2 N

e

−

 to 
   

2

log

2

1log1 22 NN

ee

−+−

= (i.e. by 39.3%). We investigated the change of convergence 

ratios in systems with different sizes (e.g. N=128, 256, 512, or 1024) through simulation 

experiments. The DI algorithm is used. We observed that the convergence ratio r1 slightly drops 

when the system size is doubled. After the system has its size increased by a factor of 8 (for 

example, N increases from 128 to 1024), the reduction of r1 becomes close to 42.8% (r1=0.021 for 

N=128, and 0.012 for 1024). The reduction is smaller than that calculated for the CB algorithm 

(which is 77.6% in this case). During the following rounds, the convergence ratios for these systems 

gradually increase to be as large as 0.3. We can further observe that the proportions of loads 

transferred between nodes are almost the same for the different systems. Also, the effectiveness of 

the scheme is not different when these systems are under the same situation of churn (see Section 

3.6). These results show that the diffusive scheme is scalable to the large-sized systems.  

D. Network structure 

The impact of the network structure on the effectiveness of diffusive load balancing has been 

intensively studied by considering ring, hypercube, or star topologies (see [17, 18, 24]). In this 

section, we consider a structure of random neighborhoods for load balancing operations. We 

consider two kinds of random neighborhoods. One is called random-graph neighborhoods, which 

are the neighborhoods in a network with a random-graph topology. Another is called random-walk 

neighborhoods, which are the neighborhoods that are obtained by dynamic random walks, a 

different neighborhood for each load balancing operation. A node with a neighborhood of either 

kind has  N2log  neighbors. 

We observed that the network structure of a system has an impact on the convergence speed of 

an algorithm. It has little impact on the CB algorithm since we see that the convergence ratio r1 is 

around 0.003 for either kind of random neighborhoods. This value is also close to that for the skip-

list neighborhoods. When the random-graph neighborhoods, instead of the skip-list neighborhoods, 

are used, the other algorithms have their convergence speeds degraded. The Proportional, SI and RI 

algorithms have their convergence ratios increased by 10% (see Figure 4(a) to be compared with 

Figure 3(b)). The DI algorithm has its convergence ratio increased by a factor of about 2 to 4 (for 

the skip-list neighborhoods, r1 is around 0.012, and r5 around 0.30, in Figure 3(b); for the random-

graph neighborhoods, r1 is around 0.046 and r5 around 0.6, in Figure 4(a)).  
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Figure 4: The convergence ratios of diffusive load balancing with different neighborhoods: (a) in 

an overlay network with a random-graph topology, and (b) with neighborhoods collected by 

random walks 

 

The situation is different when random-walk neighborhoods are used, as shown in Figure 4(b); 

only the classic Proportional algorithm does not perform well. The standard deviation of available 

capacities at a level of around 0.05 can not be further reduced even after the experiment runs for 50 

rounds. The SI and RI algorithms perform better with random-walk neighborhoods. Starting from 

round 2, their convergence ratios become much smaller than those for static overlay network 

neighborhoods (either the skip-list neighborhoods or random-graph neighborhoods). Using random-

walk neighborhoods, a node has more chance to be a sender or a receiver when it runs operations 

with different neighborhoods each time, and the reduction of the load differences is also larger than 

in the case of overlay network neighborhoods. Using random-walk neighborhoods, the DI algorithm 

has similar convergence ratios as those for skip-list neighborhoods. Meanwhile, we observe that the 

proportion of loads transferred between nodes in a system using the DI, SI or RI algorithm is very 

similar to that in the previous case (see Figure 3(c)). 

E. Workloads with highly skewed distributions 

In this section, we investigate the decision algorithm in situations with highly skewed 

distributions of workloads, like the Zipf distribution in [22]. The simulated systems have different 

workload distributions. We observed that, in these systems, the convergence speeds of a decision 

algorithm are different at the beginning of load balancing. Afterwards (e.g. after one or two rounds), 

the speeds do not change much. We also observed that the SI algorithm handles workloads with 

extremely skewed distributions better than the DI algorithm.  

To simulate a skewed workload distribution, we considered a situation where a certain 

proportion of the nodes are hot spots (e.g. 0.001, 0.01, 0.1, 0.2, or 0.4 of all nodes). At the 

beginning of an experiment, the workload is evenly distributed over all the hot-spots. The DI and SI 

algorithms are used for the following experiments. One of two kinds of neighborhoods is used: 

either the skip-list or random-walks neighborhoods. Figure 5 only displays the r1 for each of the 

cases since we observed that, along with the progress of load balancing, the convergence ratios (e.g. 

r5) depend on the decision algorithm and the kind of neighborhoods rather than the number of hot 

spots.  

 



15 

 0

 0.2

 0.4

 0.6

 0.8

 1

0.001 0.01 0.1 0.2 0.4 uniform

c
o
n
v
e
rg

e
n
c
e
 r

a
ti
o

hot-spot workload

DI, skip-list
DI, random
SI, skip-list
SI, random

 

Figure 5: Comparison of the DI and SI algorithms in systems with hot spots 

The SI algorithm outperforms the DI algorithm when the system has an extremely small 

proportion of hot spots, like 0.001. However, the advantage of the SI algorithm drops when the 

convergence speed of the DI algorithm increases with the increase of the proportion of hot spots. 

For the 0.001 hot-spots case, Figure 5 shows that the SI algorithm has an r1 of 0.19, but the RI 

algorithm has 0.35. For the 0.1 hot-spots case, the convergence ratios of the DI algorithm are close 

to those observed from the previous experiments where the system initially has a uniform workload 

distribution. However, the speed of the DI algorithm will not increase much even if the system 

further increases the proportion of hot-spots. One reason for this is that, in the 0.001 case, a 

neighborhood could have one or zero sender with a larger probability at the beginning of the 

experiment. Since the DI algorithm only selects one receiver for a sender, the DI algorithm resolves 

fewer differences between the available capacities of the nodes than the SI algorithm which can 

select many receivers for one sender. Therefore, we conclude that the workload distribution has 

little impact on the convergence speed of the SI algorithm (with convergence ratios of r1 around 

0.2), but, it has an impact on the DI algorithm, which reduces the convergence speed when the 

workload distribution is extremely skewed.  

F. Churn 

In this subsection, we investigate the effectiveness of diffusive load balancing in a system that 

experiences churn. Churn occurs when nodes join or leave the system. This involves changes of the 

overlay network and the distribution of workloads. We analyzed the variance of the available 

capacities in a system with churn.  

In the simulated system, churn is realized by adding or deleting nodes from the network. We use 

the functions provided by the SSim library [29] (i.e. a library used for discrete-event simulation) to 

schedule the events for joining and leaving nodes. The events of nodes joining or leaving are 

modeled by a Poisson arrival process where the inter-arrival times of these events follow an 

exponential distribution. In the following, we use the term churn rate to measure the intensity of 

churn; it is defined as the fraction of nodes that join or leave the system during one round of load 

balancing. In this way, the changes of available capacities of nodes caused by churn and the 

reduction of the differences between these available capacities produced by the diffusive load 

balancing are measured within the same time period. We assume that, for each node that leaves, 

there is a node that joins so neither the total number of nodes nor the system's average available 

capacity changes. For example, when the churn rate is 0.1 in a system with 1000 nodes, 50 nodes 
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will join and 50 nodes will leave during one round. If the duration of a round is T , the mean inter-

arrival time of joining or leaving events is 50

T

. Without load balancing, the standard deviation of the 

available capacities will increase as time proceeds. This increase depends on the churn rate in the 

network.  

Using the proposed diffusive load balancing scheme in a P2P system with churn, we observed in 

our simulation experiments that the standard deviation of available capacities depends linearly on 

the average workload of the system. According to the analysis of Cybenko in [18], when a system 

with dynamic workload uses a synchronous scheme, the variance of loads on nodes after a load 

balancing operation can be calculated as 
( ) ( )

2

2

02

1 γ

σ
σ

−
=′

l
l

 where ( )l2

0σ  is the variance of the dynamic 

workload introduced during one round, and 
γ

is the convergence factor of the scheme. In a P2P 

system like Chord, a leaving node passes its workload to its predecessor, and a newly joined node 

takes over half of the workload of its successor. We assume that all nodes have the same capacity C. 

The workloads of the nodes are represented by a random variable l with a mean value l . The 

system is load-balanced before a change of the network (i.e. a single join or leave event). Therefore, 

the variance of available capacities introduced by the change is:  
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(Equation 3.9). 

 

Therefore, according to Cybenko’s equation, we suggest that the standard deviation of available 

capacities is a linear function of the average workload in the system. In our experiments, we 

observed that the larger the average workload, the larger is the standard deviation. Moreover, for 

systems that differ only on their average workloads, the ratios of the standard deviation of available 

capacities to the average workload of the systems (i.e. those with homogeneous nodes) are always 

the same. Therefore, we define this ratio as the standard deviation of normalized available 

capacities and use it as a parameter for comparing the performance of different decision algorithms. 

The proposed scheme controls the standard deviation of available capacities (or normalized 

available capacities) within a bound. In the following experiments, a system uses the DI or SI 

algorithm with the skip-list or random-walk neighborhoods. Figure 6 shows the data for the first 20 

rounds of load balancing. We observe that, after a few rounds (e.g. 2 or 3 rounds), the system is in a 

steady state where the standard deviation of available capacities (or normalized available capacities) 

and the proportion of loads transferred are steady. We see that the average of the standard deviation 

of available capacities in the steady state is bounded.  

Also the size of the bound for the standard deviation of available capacities (or normalized 

available capacities) depends on the decision algorithm. An algorithm with a faster convergence 

speed can maintain a smaller bound for the system. For example, for the case of the SI algorithm, 

the bound is about 30% larger than for the DI algorithm (0.15 for the DI algorithm and 0.2 for the 

SI algorithm). Furthermore, we note that the bounds, for a given algorithm using different kinds of 

neighborhoods, are not significantly different. Figure 6(b) indicates that the costs of load balancing 
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are similar for both decision algorithms. Both these algorithms invoke almost the same proportions 

of loads transferred when the system is in the steady state. The proportion for a decision algorithm 

does not depend on what neighbors are used: a skip-list overlay network, or probed by random 

walks.   
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                                       (a)                                                                  (b)       

Figure 6: Effectiveness of diffusive load balancing in a system with churn at a rate of 0.1: (a) 

standard deviation of normalized available capacities, and (b) proportion of loads transferred 

 

The system has its available capacities bounded by a higher value when the churn has a larger 

rate. Also, the DI algorithm brings smaller bounds to the system than the SI algorithm; the larger the 

churn rate, the larger is the difference between the two algorithms. In the experiments of Figure 7, 

the churn rates vary from 0.1 to 0.9 with an increment of 0.1. A rate of 0.01 is also used as an 

exception. The bounds and their 95% confidence intervals were collected from the experiments 

which were run 20 times. The average workload of a simulated system is equal to 5 

requests/second. Figure 7(a) shows the bounds when a system has different churn rates. In a system 

that has a churn rate of 0.1, the bound is around 0.7 (with a bound for normalized available capacity 

of 0.139 in the figure) for the DI algorithm with the overlay network neighborhoods. In this system, 

few nodes would have an available capacity less than zero and be overloaded. In the case that the 

system has churn with a rate of 0.9, the bound becomes 1.5 (with a bound of normalized available 

capacity of 0.3 in the figure), and there are less than 10% of nodes overloaded. We further observed 

that the bound is not a linear function of the churn rate. We observed that the size of the bound also 

depends on whether the DI algorithm or SI algorithm is used. When the churn rate is as small as 

0.01, the bounds for the two algorithms are not significantly different. The difference between these 

bounds increases when the rate increases. When the churn rate is as large as 0.9, a system using the 

SI algorithm would have a bound twice as large as a system using the DI algorithm (0.6 for the SI 

algorithm, and 0.3 for the DI algorithm). However, the system has fewer loads transferred when it 

uses the SI algorithm (Figure 7(b)).  
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                                                  (a)                                                                            (b) 

Figure 7: The bound of the standard deviation of normalized available capacities in systems with 

varying churn: (a) the standard deviation of normalized available capacities, and (b) proportion of 

loads transferred 

 

Although the size of the system does not change in the above experiments, the bounds obtained 

in these experiments are realistic also when the system size may change. In a real P2P system, the 

rates of node joining and leaving may be different. In this case, the size of the system will change, 

e.g. the size will increase if the joining rate is higher than the leaving rate. As long as the rate 

difference is a small fraction of the leaving (or joining) rate, we expect that the bound of the 

standard deviation of the normalized available capacity would be very close to the bound obtained 

for the stationary system state in our simulations. When the system size changes, the expected 

bound may therefore be obtained by interpolating the bounds obtained by our simulations for the 

different fixed system sizes.       

G. Heterogeneous node capacities 

Since the proposed load balancing scheme equalizes the available capacities of nodes, systems 

with heterogeneous nodes capacities can have similar mean response time for their services. In a 

system without churn, the convergence of the scheme does not depend on whether the nodes are 

homogeneous or heterogeneous. Therefore, our experiments that use systems without churn in the 

previous sections are all valid. However, for a system with churn, the variation of workloads 

introduced by the leaving or joining of nodes depends on the capacities of nodes. The larger-

capacity nodes which have larger workloads would induce larger variations than the smaller-

capacity nodes (assuming that all nodes have the same available capacity).   

In the following experiments, the system has two types of nodes: small-capacity nodes with a 

capacity of 10 requests/second, and large-capacity nodes with a capacity of 1000 request/second. 

There are 1000 nodes among which 0.1% are large capacity nodes, and the others are small capacity 

nodes. The churn rate is 0.1. In Figure 8, there are several extraordinary points with standard 

deviations much higher than other points. These points are caused by the leaving or joining of the 

high capacity nodes. As we observed in Section 3.5, the DI algorithm has larger convergence ratios 

in the one-hot-spot case than the SI or RI algorithm. We propose to modify the DI algorithm and 

allow the sender (or receiver) to distribute its excess workload (or available capacity) to all the 

under-loaded (or overloaded) nodes in the neighborhood in the case that there is only one 

overloaded (or under-loaded) node in the neighborhood. This modification is expected to improve 
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the performance of the DI algorithm to deal with hot-spots. The solution in [15] that partitions a 

node into several virtual nodes and locates these virtual nodes in different places of the overlay 

network is an alternative approach.  
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Figure 8: Effectiveness of the diffusive load balancing in the heterogeneous node system with a 

churn rate of 0.1 

IV. DECISION ALGORITHMS DEALING WITH LARGE-SIZE SERVICES 

The sizes of services of P2P systems could be fine-grained or large. The size of a service 

represents the resource requirements of the service, and it is equal to the amount of resources that 

the service uses to respond a request. In the previous section, we saw that the diffusive scheme can 

completely equalize the available capacities for a system with fine-grained services. However, 

working in systems with large-size services, the load balancing scheme can not exactly equalize the 

available capacities, because the differences between available capacities can not be completely 

resolved if only large-size services could be exchanged. In this subsection, we propose two decision 

algorithms for the diffusive scheme to deal with large-size services.  

The two algorithms are variations of an algorithm proposed in [19], which used a sender-

initiated policy and considered tasks with equal amounts of resource requirements. Our algorithms 

use a directory-initiated policy and consider the amount of resource requirements of services instead 

of the number of services on the nodes. They are intended for systems with homogeneous services 

(i.e., all services have the same resource requirements) and for systems with heterogeneous services 

(i.e., services have different resource requirements), respectively. We investigate the remaining 

standard deviation of available capacities and the impact of the sizes of services on this standard 

deviation. We use the same notations as in Section 3 to describe the algorithms. As earlier, we 

assume that the overlay network would update the destination of a shared object or a virtual server 

during a load transfer.  

A. Decision algorithms for large sized services 

1) Homogeneous services 

Here we describe a decision algorithm called DIHomoService for the diffusive scheme to deal 

with services of homogeneous size. Similar to the DI algorithm, this algorithm calculates the loads 

for load transfers between pairs of senders and receivers. It shares with the DI the process for 

identifying the states of nodes as overloaded or under-loaded and selecting a pair of sender and 

receiver. However, it calculates the number of services to be transferred rather than the amount of 

load to be transferred. Figure 9 shows a segment of this algorithm. This segment replaces the lines 5 
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to 8 of the DI algorithm shown in Figure 1. We assume that the resource requirements of services 

are equal to L. The number of services for a load transfer is calculated at line 5 where the symbol 

 x  is the floor function of a real number x, equal to the integer part of x.  

5       

{ }







 −−
=

L

avcavcavcavc
tr ii ArsA ,min

 

6       if tr > 0  

7          decide the transfer with the number of services as tr 

8          remove x from SVect  

9          remove y from RVect 

10      else break;    

11   else break;  

12 End of Do 

      

Figure 9: The segment of DIHomoService algorithm replacing lines 5 to 8 of the DI algorithm 

shown in Figure 1 

 

Following the above procedure, the diffusive load balancing procedure eventually stops. We 

assume that the system has a static workload and no churn. Cedo et al. [1] presented assumptions 

for a general model of a partially asynchronous load balancing scheme to converge or stop in a 

system with the equal-sized tasks. We show that our scheme with the DIHomoService algorithm 

has stronger properties compared with this general model. First, the proposed scheme allows only 

one node to run an operation at a time in a neighborhood. This guarantees that the load status of a 

neighborhood is always fresh and correct during an operation. Second, since the DIHomoService 

decides load transfers for multiple pairs of senders and receivers, the proposed scheme has a 

stronger load balancing power than the general model which uses a sender-initiated policy for load 

transfers. Third, the DIHomoService also guarantees that scav ′
 is less than rcav ′  for a pair of sender 

and receiver. Hence, like the general model, our scheme using the DIHomoService will eventually 

stop (in a system with a static workload), and the system enters a globally stable state thereafter.  

We further claim that after the system enters a globally stable state, the local load imbalance (i.e. 

the maximum difference between the available capacities in a neighborhood) is bounded to 2L. In 

the case that the decision algorithm of an operation decides no load transfer to be done between two 

nodes, for example, between the sender s1 of SVect and the receiver r1 of RVect, either 

Lavcavc sAi
<− 1 or Lavcavcr <−1 holds. Then, the inequality Lavcavc sr 211 <−  holds. In the 

neighborhood, there is no receiver that could be located as a receiver for s1, and no sender that 

could be found for r1. Hence, in the globally stable state, the local load imbalance (i.e. the 

difference between the available node capacities between s1 and r1) is at most 2L. Therefore, the 

global load imbalance of the system (i.e. the maximum difference between the available capacities) 

is bounded by 2LD where D is the diameter of the system (i.e. the maximum of the minimum hop 

distance between any two nodes).  

2) Heterogeneous services 
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The DIHeteroService algorithm deals with heterogeneous services; its segment that replaces the 

line 5 to 8 of the DI algorithm is shown in Figure 10. This segment mainly selects the services from 

the sender s. This selection prevents a sender (or a receiver) from becoming a receiver (or a sender) 

after the load transfer (see lines 7 to 19). In the case that a sender has no services for a receiver (line 

14), another sender is selected for the same receiver, and the decision procedure continues (lines 18 

through 21).  

5   W = 
{ }

; 

6   P = 
{ }sservice ∈

;  

7   Do  forever 

8         
{ }

ii ArsA avcavcavcavctr −−= ,min
  

9         
0=selectl

   

10         if 0>l  

11             
{ }trll service

Pservice
select ≤=

∈
max

   

12             if 
0>selectl

 

13                 add v to W if selectv ll =
 

14                selectss lavcavc +=
 

15                selectrr lavcavc −=
 

16                remove v from P 

17             else break 

18         else break 

19  End of Do  

14  if W is not empty 

15        send instruction to s and r for the load transfer containing the services in W 

16        from s from SVect and r from RVect 

17  else  

18        remove s from SVect 

19        if SVect is not empty  

20           go to line 4 

21        else break 

22 End of Do 

Figure 10:  The segment of DIHeteroService algorithm which replaces the lines 5 to 8 of the DI 

algorithm shown in Figure 1.  

 

Using the arguments we used for the DIHomoService algorithm, we can show that the load 

balancing with the DIHeteroService algorithm will stop in a system with a static workload. Like the 

DIHomoService algorithm, the DIHeteroService algorithm reduces the differences between the 
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available capacities of the nodes in each operation. Also, when the distribution of the loads in the 

system is unknown, in a globally stable state, the local imbalance is bounded by max2l
where maxl

is 

the maximum resource requirement of the services, and the global load imbalance is bounded by 

Dlmax2
. 

B. Analysis of the algorithms 

Using simulation experiments, we investigated the two above decision algorithms in terms of 

their convergence speeds, numbers of load transfers, and the remaning standard deviations of 

available capacities. We assume that each load transfer requires the same amount of resources, such 

as CPU or bandwith, even though they may include multiple services. Therefore, a larger number of 

load transfers indicates a higher cost of load balancing. The impact of the resource requirements of 

services (i.e. the sizes of services) is also investigated. The simulated system has a configuration 

similar to the previous experiments. In the following experiments, the system installs large-sized 

services or small-sized services. These services are randomly distributed over the nodes at the 

beginning of an experiment, and the average available capacity is 5 requests/second. For example, 

for a system with large-sized homogeneous services, L is set to 2.5 requests/second for a service, 

which is of the same order as the node capacity. Therefore, a node can host at most 4 services. For a 

system with small-sized homogeneous services, L is set to 0.25 requests/second, which is one tenth 

of that of a large service. A node can host at most 40 such services. For the systems hosting 

heterogeneous services, services have their resource requirements uniformly distributed between 0 

and a preconfigured maximum, e.g., 2.5 requests/second for a system with large-sized services, and 

0.25 requests/second for a system with small-sized services.  

The decision algorithms converge faster in the systems with smaller services, and the standard 

deviation of available capacities are smaller in these systems. Table 1 shows the mean value and the 

90% confidence interval (CI) for values collected from 20 runs of experiements. In all of the 

experiments, the diffusive load balancing stops after a small number of rounds (e.g. at most 4 

rounds). The r1 of the decision algorithms are smaller than their r2. Furthermore, r1 for a system 

hosting small services is smaller than for a system hosting large services. This indicates that small 

services facilitate load balancing. Since the load balancing operations could select the small services 

in the heterogeneous systems for further resolving load unbalances, the available capacities of the 

nodes in these systems can have a smaller standard deviation in subsequent rounds. However, 

moving services for load balancing in these heterogeneous systems introduces more load transfers. 

The number of load transfers in a heterogeneous system is about three times larger than in a 

homogeneous system hosting only the maximum-sized services. From Table 1, we also see that the 

global load imbalance of a system in the stable state is much smaller than the bound calculated in 

Section 4.1. The predicated global load imbalance is bounded by LD2 , but the experiments show a 

value of around L or 2L.  
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Table 1: Results for the DIHomoService and DIHeteroService decision algorithms with a skip-list 

overlay neighborhood 

Small services Large services 
 

homo hetero homo hetero 

Mean 1825.9 5414.6 617.65 1608.05 Number of load 

transfers 90% CI 25.44 64.46 5.86 17.17 

Mean 0.034 0.013 0.141 0.124 
r1 

90% CI 0.002 0.001 0.009 0.002 

Mean 0.88 0.324 0.99 0.99 
r2 

90% CI 0.039 0.016 0.005 0.001 

Mean 0.09 0.012 0.49 0.355 Standard deviation of 

available capacities 90% CI 0.01 0.001 0.032 0.006 

Mean 0.36 0.139 4.5 2.64 Maximum difference 

of available capacity 90% CI 0.047 0.014 0.377 0.116 

 

Table 2: The effectiveness of the scheme in systems with churn 

 small services large services 

 homo Hetero homo hetero 

Rate for churn: 0.1     

Bound* 0.75 0.805 0.83 0.79 

Number of load transferred 841 2048 122 708 

Rate for churn: 0.9     

Bound* 1.68 2.29 1.82 1.68 

Number of load transferred 2609 3326 817 2229 

*: the bound of the standard deviation of available capacities  

 

We observed that, in a system using the diffusive scheme, the sizes of services have little impact 

on the standard deviation of the available capacities when churn is noticeable. In the following 

experiments, the churn rate is 0.1 or 0.9. The four systems described above are used. Table 2 shows 

the bounds of the standard deviation of available capacities and the average numbers of load 

transfers in each round for the four simulated systems. When the churn rate is 0.1, the four systems 

have their bounds close to 0.8 in their steady states; these bounds are not significantly different (see 

Table 2). A system has its bound increased when the churn rate increases. When the rate is 0.9, the 

heterogeneous system hosting small services has a bound of around 2.2, and the other systems have 

a bound of around 1.6 (see Table 2). These bounds are close to those in systems with fine-grained 

services (see Section 3.6). This indicates that, in a system with churn, the size of services has little 

impact on the bound of the standard deviation of available capacities. However, the numbers of load 

transfers are largely different (see Table 2). The systems hosting large services are favored; the load 

balancing operations introduce fewer load transfers.   
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V. DISCUSSION AND CONCLUSION 

A. Comparison of load balancing algorithms 

The proposed diffusive load balancing technique is different from other techniques proposed for 

P2P systems. First, the proposed technique equalizes the available capacities of nodes so that the 

mean response times of services could be similar. Other techniques equalize other kinds of 

performance aspect. Some of them (e.g. [2, 3, 12]) equalize the amount of data or the numbers of 

virtual servers on nodes, and some others (e.g. [8, 10]) equalize the utilizations of nodes. With those 

techniques, a system that has nodes with heterogeneous capacities may have largely varying mean 

response times for its services. Second, we analyzed the effectiveness of the proposed scheme in 

terms of convergence speed and the remaining standard deviation of available capacities in the case 

of churn. These kinds of analysis display the statistical properties of load balancing more clearly 

than an analysis based on load imbalance (i.e. the difference between the maximum and the 

minimum loads of nodes) as in [3, 11, 12], or the proportion of requests failed or succeeded as in [5, 

7, 8].  

Third, the proposed technique uses a diffusive scheme. In order to differentiate the diffusive 

scheme from the other schemes, we compare in the following the proposed diffusive scheme with 

three other typical schemes for P2P systems: the distributed directory, k-ary tree, and random 

probing (see Table 3). These schemes are different in the way they decide load transfers. In the 

distributed directory scheme, the number of directories is pre-configured. The effectiveness of the 

scheme depends on the number of directories and the interval between the two consecutive load 

balancing operations of a directory. For example, for a large-size system, the scheme with a small 

number of directories is similar to a scheme with a central directory. For a system of small size, the 

scheme with a large number of directories is similar to a distributed scheme using random probing. 

Different from the distributed directory scheme, the random probing scheme and the diffusive 

scheme let every node in the system make these decisions. Therefore, the two schemes are more 

scalable compared with the distributed directory scheme with a fixed number of directories. The k-

ary tree scheme uses the inner tree-nodes to make decisions for load transfers. Therefore, the 

number of decision components is a fraction of the number of nodes in the system, and the scheme 

is scalable.  

In terms of the Information policy, among the four schemes, only the k-ary tree scheme uses a 

tree structure to aggregate the global load status information and to disseminate this information to 

each node. As we reviewed in Section 2.1, the global information of a system easily becomes stale 

if the system has a dynamic workload. Moreover, churn in a P2P system induces fluctuations of the 

tree-structure in addition to variations of workload. This further degrades the accuracy of the global 

load status information. Furthermore, Shen et al. [7] showed that the k-ary tree needs more 

messages to implement its Information policy. The other three schemes all use the load status 

information collected from a subset of nodes. Also, without using the global information, they are 

more effective in dealing with the dynamics of the P2P system.  

Among these schemes, only the random probing scheme uses a sender-initiated Transfer policy 

for a load transfer. The other schemes use a directory-initiated policy where a decision component 
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selects a sender and a receiver for a load transfer. Our previous experiments showed that the 

directory-initiated policy is superior to the sender-initiated policy.   

 

Table 3: Comparison of load balancing schemes for P2P systems 

Structure Decision 

component   

Information policy  Transfer policy Location policy  

Distributed 

Directory (d-

directory) [8] 

Directories  a directory 

collects load 

statuses of 

registered nodes  

directory-

initiated 

Nodes registered in 

each directory 

k-ary tree [10] inner nodes 

of the tree 

tree-root 

aggregates load 

statuses of nodes 

through the tree 

structure, and the 

average load 

status of the 

system is 

disseminated to 

leaves   

directory-

initiated  

Nodes in the sub-trees 

of a decision 

component 

Random probing 

[12] 

each node a node collects the 

load statuses of a 

set of randomly 

selected nodes  

sender-initiated Nodes that were 

probed 

Diffusive scheme  each node a node collects the 

load statuses of 

nodes in its 

neighborhood  

directory-

initiated 

Nodes in the 

neighborhood  

 

Among these schemes, the distributed directory and k-ary schemes spend fewer messages on 

load balancing operations, but they spend extra messages on constructing the load balancing 

structure. For example, in a system using the distributed directory scheme, the load balancing 

operations use 2N messages in one round in the case that the system has N nodes, including those 

for load status reports and load transfers. However, these nodes also use )log( NNO  messages to 

register in the directories, and they change their registrations from time to time for achieving global 

load-balance. In a system using the k-ary scheme, an information operation uses 2(N-1) messages, 

including the messages for load status aggregation and dissemination. It uses NN klog  messages in 

total to resolve load unbalance in the worst case, when half of the nodes are overloaded and all 

located in the same sub-tree of the root, and the load balancing requests are individually sent to 
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different nodes. However, the procedure that constructs a tree based on a DHT uses )log( NNO  

messages. This procedure calls a lookup procedure to map a tree node to a real node in the DHT. 

Moreover, the message cost on maintaining the tree in a system depends on the churn in the system. 

The larger the churn rate, the larger the message cost.  

The message cost of the other two schemes (i.e. the diffusive scheme and the random probing 

scheme) is not impacted by the churn of the system since they do not construct control structures. In 

a system using diffusive load balancing, the load balancing operations use )log( NNO  messages in 

one round, including those for collecting load statuses of neighbors and for load transfers. The 

message cost of the random probing scheme depends on the accuracy requirement for the estimation 

of the load status in the system. The scheme in [12] uses )(log NO  messages (or steps) for each 

probe, and )(log NO  probes for an operation. Then, in a round, the message cost is )log( 2 NNO  in 

total. We conclude that the diffusive scheme requires fewer messages than the random probing 

scheme in a round. 

To further distinguish the random probing scheme proposed in the literature and the diffusive 

scheme, we implemented a simulation of the random probing scheme and investigated its 

convergence speed. Similar to the experiment in Section 3.4, the operating node of an operation 

randomly picks  N2log  nodes in the system as the neighborhood for load balancing. The random 

probing scheme uses a sender-initiated policy. In the case that the running node turns out to be a 

sender (its available capacity is larger than the average available capacity of the nodes in the 

neighborhood), the running node locates the node with the smallest available capacity as a receiver. 

We compared two decision algorithms that are popular in random probing schemes. One algorithm 

lets the sender equalize its available capacity with one receiver, in the following called equalization 

algorithm. Another algorithm lets the sender and the receiver have their available capacities equal to 

the neighorhood average, in the following called neighborhood average algorithm. The other 

parameters of the simulated system are configured as for the experiments in Section 3.  

Figure 11 shows that the two decision algorithms are different in their convergence ratios. The 

equalization algorithm converges faster than the neighborhood average algorithm. However, the 

equalization algorithm induces 15% more load transfer than the neighborhood average algorithm 

(the equalization algorithm moves 45% and the other moves 30% of the total workload). Compared 

with the data shown in Figure 4(b), the convergence speed of the equalization algorithm is close to 

that of the SI algorithm using random neighborhood, which is slower than the DI algorithm. The 

experiment further indicates that random probing schemes with a sender-initated policy converge 

much slower than the diffusive scheme with a directory-initiated policy.  
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Figure 11: The convergence ratios of the random probing scheme 

5.2 Searching for services that are moved 

Load balancing normally implies the movement of services from an overloaded node to an 

under-loaded node. Such transfer will in general make the searching for these services more 

difficult. P2P systems normally establish their overlay networks in such a way that it provides 

efficient searching, possibly through a distributed hash table (DHT). In the following we mention 

two design alternatives to implement service transfers without interference with the searching 

algorithm. 

One alternative is to foresee for each service (or object) two nodes: (1) the owner node (which is 

the destination of the searching algorithm for this service), and (2) the host node which stores and 

executes the service. The service is accessed indirectly; first the owner node is reached. This node 

forwards the request to the host node. When the service is moved, the address of the host node in 

the owner node is updated.  

Another alternative is the use of virtual servers. Each node contains a certain number of virtual 

servers, and the virtual servers are the units to be transferred between the nodes. The virtual servers 

maintain an overlay network among themselves which can be used for searching. When a virtual 

server is moved, all its neighbor virtual servers will have to update their routing table with the 

address of the node where the moved virtual server will be located. Therefore the searching is not 

affected by the load movement. The load balancing algorithm running on a physical node may use 

the routing tables of its virtual servers to select the neighbors to be used for load balancing. In a 

sense, this leads to random neighborhoods for load balancing without using random walks; the 

overhead of random walks is avoided.  

B. Conclusion 

We proposed a diffusive load balancing scheme for P2P systems in this paper. This scheme 

focuses on equalizing the available capacities of the nodes in the system so that the services on 

these nodes could have similar mean response times. Nodes in a P2P system asynchronously run the 

load balancing operations. Since these operations use the structure of an overlay network to identify 

their neighborhoods, they do not introduce extra overheads for maintaining these neighborhoods 

that are required for collecting the load information.  

The effectiveness of decision algorithms for the diffusive scheme is discussed in detail. The 

Complete Balancing (CB) algorithm exactly equalizes the loads on the nodes in a neighborhood, 

and therefore converges fastest. Also, its convergence speed does not depend on what kind of 

neighborhood is used: the skip-list neighborhood or the random neighborhood. The Directory-
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initiated (DI) algorithm is superior to the Sender-initiated (SI) or Receiver-initiated (RI) algorithm 

since its convergence speed is close to the CB algorithm. The convergence speed of the SI (or RI) 

algorithm improves when it uses the neighborhoods constructed by random-walks. Especially, in 

situations with a small number of hot spots (for example, 0.001 or 0.01 of nodes are hot spots) these 

algorithms perform better than DI. This advantage disappears when the proportion of hot spots 

becomes larger (e.g. 0.1). The diffusive scheme is very scalable; its convergence speed increases 

when the size of a system increases. The message complexity of the load balancing operation 

performed by a node is close to )(log NO  in a system with N nodes. 

When churn occurs, the diffusive scheme is able to keep the standard deviation of available 

capacities within a bound. The bound is larger when the system has a larger churn rate. The DI 

algorithm brings the available capacity into a smaller bound than the SI (or RI) algorithm. We note 

that in a system with homogeneous nodes, the bound of the available capacities is a linear function 

of the average workload in the system.  

We also designed load balancing decision algorithms for systems with large-size services; 

however, the sizes of services have little impact on the effectiveness of load balancing. The scheme 

converges faster for smaller-sized services since its operations invoke more services to be 

transferred, and the reduction of the differences between the available capacities is larger. However, 

when churn occurs, the bound of the standard deviation of the available capacities is not affected by 

the sizes of services. For a specific churn rate, the systems with different large-size services have 

similar bounds. The impact of the churn rate on the bound is much larger than the impact of the 

sizes of services.   

The proposed diffusive load balancing scheme could be augmented with other mechanisms to 

guarantee the quality of services. One quality of service requirement is the mean response times of 

services. When a system uses the proposed diffusive load balancing, the services that the system 

provides have similar mean response times. From the perspective of performance, services may 

have different requirements on their mean response times. When a mechanism that controls the 

mean response times for individual services is combined with the proposed load balancing scheme, 

the services in a system could have different mean response times while the nodes have the same 

available capacity.    
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